Difference between revisions of "2015 AIME I Problems/Problem 13"

(Created page with "==Problem== With all angles measured in degrees, the product <math>\prod_{k=1}^{45} \csc^2(2k-1)^\circ=m^n</math>, where <math>m</math> and <math>n</math> are integers greater...")
 
(Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 
With all angles measured in degrees, the product <math>\prod_{k=1}^{45} \csc^2(2k-1)^\circ=m^n</math>, where <math>m</math> and <math>n</math> are integers greater than 1. Find <math>m+n</math>.
 
With all angles measured in degrees, the product <math>\prod_{k=1}^{45} \csc^2(2k-1)^\circ=m^n</math>, where <math>m</math> and <math>n</math> are integers greater than 1. Find <math>m+n</math>.
 +
 +
==Solution==
 +
Let <math>x = \cos 1^\circ + i \sin 1^\circ</math>. Then from the identity
 +
<cmath>\sin x = \frac{x - \frac{1}{x}}{2i} = \frac{x^2 - 1}{2 i x},</cmath>
 +
we deduce that (taking absolute values and noticing <math>|x| = 1</math>)
 +
<cmath>|2\sin x| = |x^2 - 1|.</cmath>
 +
But because <math>\csc</math> is the reciprocal of <math>\sin</math> and because <math>\sin z = \sin (180^\circ - z)</math>, if we let our product be <math>M</math> then
 +
<cmath>\frac{1}{M} = \sin 1^\circ \sin 3^\circ \sin 5^\circ \dots \sin 177^\circ \sin 179^\circ</cmath>
 +
<cmath> = \frac{1}{2^{90}} |x^2 - 1| |x^6 - 1| |x^{10} - 1| \dots |x^{354} - 1| |x^{358} - 1|</cmath>
 +
because <math>\sin</math> is positive in the first and second quadrants. Now, notice that <math>x^2, x^6, x^{10}, \dots, x^{358}</math> are the roots of <math>z^{90} + 1 = 0.</math> Hence, we can write <math>(z - x^2)(z - x^6)\dots (z - x^{358}) = z^{90} + 1</math>, and so
 +
<cmath>\frac{1}{M} = \dfrac{1}{2^{90}}|1 - x^2| |1 - x^6| \dots |1 - x^{358}| = \dfrac{1}{2^{90}} |1^{90} + 1| = \dfrac{1}{2^{89}}.</cmath>
 +
It is easy to see that <math>M = 2^{89}</math> and that our answer is <math>2 + 89 = \boxed{91}</math>.
  
 
==See Also==
 
==See Also==
 
{{AIME box|year=2015|n=I|num-b=12|num-a=14}}
 
{{AIME box|year=2015|n=I|num-b=12|num-a=14}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 17:57, 20 March 2015

Problem

With all angles measured in degrees, the product $\prod_{k=1}^{45} \csc^2(2k-1)^\circ=m^n$, where $m$ and $n$ are integers greater than 1. Find $m+n$.

Solution

Let $x = \cos 1^\circ + i \sin 1^\circ$. Then from the identity \[\sin x = \frac{x - \frac{1}{x}}{2i} = \frac{x^2 - 1}{2 i x},\] we deduce that (taking absolute values and noticing $|x| = 1$) \[|2\sin x| = |x^2 - 1|.\] But because $\csc$ is the reciprocal of $\sin$ and because $\sin z = \sin (180^\circ - z)$, if we let our product be $M$ then \[\frac{1}{M} = \sin 1^\circ \sin 3^\circ \sin 5^\circ \dots \sin 177^\circ \sin 179^\circ\] \[= \frac{1}{2^{90}} |x^2 - 1| |x^6 - 1| |x^{10} - 1| \dots |x^{354} - 1| |x^{358} - 1|\] because $\sin$ is positive in the first and second quadrants. Now, notice that $x^2, x^6, x^{10}, \dots, x^{358}$ are the roots of $z^{90} + 1 = 0.$ Hence, we can write $(z - x^2)(z - x^6)\dots (z - x^{358}) = z^{90} + 1$, and so \[\frac{1}{M} = \dfrac{1}{2^{90}}|1 - x^2| |1 - x^6| \dots |1 - x^{358}| = \dfrac{1}{2^{90}} |1^{90} + 1| = \dfrac{1}{2^{89}}.\] It is easy to see that $M = 2^{89}$ and that our answer is $2 + 89 = \boxed{91}$.

See Also

2015 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png