Difference between revisions of "2015 AIME I Problems/Problem 11"

m (Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 
Triangle <math>ABC</math> has positive integer side lengths with <math>AB=AC</math>. Let <math>I</math> be the intersection of the bisectors of <math>\angle B</math> and <math>\angle C</math>. Suppose <math>BI=8</math>. Find the smallest possible perimeter of <math>\triangle ABC</math>.
 
Triangle <math>ABC</math> has positive integer side lengths with <math>AB=AC</math>. Let <math>I</math> be the intersection of the bisectors of <math>\angle B</math> and <math>\angle C</math>. Suppose <math>BI=8</math>. Find the smallest possible perimeter of <math>\triangle ABC</math>.
 +
 +
==Solution==
 +
 +
Let <math>D</math> be the midpoint of <math>\overline{BC}</math>. Then by SAS Congruence, <math>\triangle ABD \cong \triangle ACD</math>, so <math>\angle ADB = \angle ADC = 90^o</math>.
 +
 +
Now let <math>BD=x</math>, <math>AB=y</math>, and <math>\angle IBD = \dfrac{\angle ABD}{2} = \theta</math>.
 +
 +
Then <math>\mathrm{cos}{(\theta)} = \dfrac{x}{8}</math>
 +
 +
and <math>\mathrm{cos}{(2\theta)} = \dfrac{x}{y} = 2\mathrm{cos^2}{(\theta)} - 1 = \dfrac{x^2-32}{32} \Rightarrow 32x = y(x^2-32)</math>.
 +
 +
Since <math>x,y>0</math>, <math>x^2-32</math> must be positive, so <math>x > 5.5</math>.
 +
 +
Additionally, since <math>\triangle IBD</math> is a right triangle with hypotenuse <math>\overline{IB}</math> of length <math>8</math>, <math>BD=x < 8</math>.
 +
 +
Therefore, given that <math>BC=2x</math> is an integer, the only possible values for <math>x</math> are <math>6</math>, <math>6.5</math>, <math>7</math>, and <math>7.5</math>.
 +
 +
However, only one of these values, <math>x=6</math> yields an integral value for <math>AB=y</math>, so we conclude that <math>x=6</math> and <math>y=\dfrac{32(6)}{(6)^2-32}=48</math>.
 +
 +
Thus the perimeter of <math>\triangle ABC</math> must be <math>2(x+y) = \boxed{108}</math>.
  
 
==See Also==
 
==See Also==
 
{{AIME box|year=2015|n=I|num-b=10|num-a=12}}
 
{{AIME box|year=2015|n=I|num-b=10|num-a=12}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 20:12, 20 March 2015

Problem

Triangle $ABC$ has positive integer side lengths with $AB=AC$. Let $I$ be the intersection of the bisectors of $\angle B$ and $\angle C$. Suppose $BI=8$. Find the smallest possible perimeter of $\triangle ABC$.

Solution

Let $D$ be the midpoint of $\overline{BC}$. Then by SAS Congruence, $\triangle ABD \cong \triangle ACD$, so $\angle ADB = \angle ADC = 90^o$.

Now let $BD=x$, $AB=y$, and $\angle IBD = \dfrac{\angle ABD}{2} = \theta$.

Then $\mathrm{cos}{(\theta)} = \dfrac{x}{8}$

and $\mathrm{cos}{(2\theta)} = \dfrac{x}{y} = 2\mathrm{cos^2}{(\theta)} - 1 = \dfrac{x^2-32}{32} \Rightarrow 32x = y(x^2-32)$.

Since $x,y>0$, $x^2-32$ must be positive, so $x > 5.5$.

Additionally, since $\triangle IBD$ is a right triangle with hypotenuse $\overline{IB}$ of length $8$, $BD=x < 8$.

Therefore, given that $BC=2x$ is an integer, the only possible values for $x$ are $6$, $6.5$, $7$, and $7.5$.

However, only one of these values, $x=6$ yields an integral value for $AB=y$, so we conclude that $x=6$ and $y=\dfrac{32(6)}{(6)^2-32}=48$.

Thus the perimeter of $\triangle ABC$ must be $2(x+y) = \boxed{108}$.

See Also

2015 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png