Difference between revisions of "2015 AIME I Problems/Problem 11"

Line 20: Line 20:
 
Therefore, given that <math>BC=2x</math> is an integer, the only possible values for <math>x</math> are <math>6</math>, <math>6.5</math>, <math>7</math>, and <math>7.5</math>.
 
Therefore, given that <math>BC=2x</math> is an integer, the only possible values for <math>x</math> are <math>6</math>, <math>6.5</math>, <math>7</math>, and <math>7.5</math>.
  
However, only one of these values, <math>x=6</math> yields an integral value for <math>AB=y</math>, so we conclude that <math>x=6</math> and <math>y=\dfrac{32(6)}{(6)^2-32}=48</math>.
+
However, only one of these values, <math>x=6</math>, yields an integral value for <math>AB=y</math>, so we conclude that <math>x=6</math> and <math>y=\dfrac{32(6)}{(6)^2-32}=48</math>.
  
 
Thus the perimeter of <math>\triangle ABC</math> must be <math>2(x+y) = \boxed{108}</math>.
 
Thus the perimeter of <math>\triangle ABC</math> must be <math>2(x+y) = \boxed{108}</math>.

Revision as of 06:20, 21 March 2015

Problem

Triangle $ABC$ has positive integer side lengths with $AB=AC$. Let $I$ be the intersection of the bisectors of $\angle B$ and $\angle C$. Suppose $BI=8$. Find the smallest possible perimeter of $\triangle ABC$.

Solution

Let $D$ be the midpoint of $\overline{BC}$. Then by SAS Congruence, $\triangle ABD \cong \triangle ACD$, so $\angle ADB = \angle ADC = 90^o$.

Now let $BD=x$, $AB=y$, and $\angle IBD = \dfrac{\angle ABD}{2} = \theta$.

Then $\mathrm{cos}{(\theta)} = \dfrac{x}{8}$

and $\mathrm{cos}{(2\theta)} = \dfrac{x}{y} = 2\mathrm{cos^2}{(\theta)} - 1 = \dfrac{x^2-32}{32}$.

Cross-multiplying yields $32x = y(x^2-32)$.

Since $x,y>0$, $x^2-32$ must be positive, so $x > 5.5$.

Additionally, since $\triangle IBD$ has hypotenuse $\overline{IB}$ of length $8$, $BD=x < 8$.

Therefore, given that $BC=2x$ is an integer, the only possible values for $x$ are $6$, $6.5$, $7$, and $7.5$.

However, only one of these values, $x=6$, yields an integral value for $AB=y$, so we conclude that $x=6$ and $y=\dfrac{32(6)}{(6)^2-32}=48$.

Thus the perimeter of $\triangle ABC$ must be $2(x+y) = \boxed{108}$.

See Also

2015 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png