Difference between revisions of "1988 AIME Problems/Problem 14"
(→Solution 3) |
(→Solution 3) |
||
Line 35: | Line 35: | ||
<cmath>-\frac{12}{25}x^2 + \frac{7}{25}xy + \frac{12}{25}y^2 - 1 = 0</cmath> | <cmath>-\frac{12}{25}x^2 + \frac{7}{25}xy + \frac{12}{25}y^2 - 1 = 0</cmath> | ||
<cmath>12x^2 - 7xy - 12y^2 + 25 = 0</cmath> | <cmath>12x^2 - 7xy - 12y^2 + 25 = 0</cmath> | ||
− | Thus, <math>b = -7</math> and <math>c = -12</math>, so <math>bc = 84</math>. The answer is <math>084</math>. | + | Thus, <math>b = -7</math> and <math>c = -12</math>, so <math>bc = 84</math>. The answer is <math>\boxed{084}</math>. |
== See also == | == See also == |
Revision as of 02:43, 26 November 2015
Problem
Let be the graph of , and denote by the reflection of in the line . Let the equation of be written in the form
Find the product .
Solution 1
Given a point on , we look to find a formula for on . Both points lie on a line that is perpendicular to , so the slope of is . Thus . Also, the midpoint of , , lies on the line . Therefore .
Solving these two equations, we find and . Substituting these points into the equation of , we get , which when expanded becomes .
Thus, .
Solution 2
The asymptotes of are given by and . Now if we represent the line by the complex number , then we find the direction of the reflection of the asymptote by multiplying this by , getting . Therefore, the asymptotes of are given by and .
Now to find the equation of the hyperbola, we multiply the two expressions together to get one side of the equation: . At this point, the right hand side of the equation will be determined by plugging the point , which is unchanged by the reflection, into the expression. But this is not necessary. We see that , , so .
Solution 3
The matrix for a reflection about the polar line is: This is not hard to derive using a basic knowledge of linear transformations. You can refer here for more information: https://en.wikipedia.org/wiki/Orthogonal_matrix
Let . Note that the line of reflection, , is the polar line . Then , so and .
Therefore, if is mapped to under the reflection, then and . Since the transformation matrix represents a reflection, it must be its own inverse; therefore, and .
The original coordinates must satisfy . Therefore, Thus, and , so . The answer is .
See also
1988 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.