Difference between revisions of "2012 AMC 10B Problems/Problem 19"

(Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
In rectangle <math>ABCD</math>, <math>AB=6</math>, <math>AD=30</math>, and <math>G</math> is the midpoint of <math>\overline{AD}</math>. Segment <math>AB</math> is extended 2 units beyond <math>B</math> to point <math>E</math>, and <math>F</math> is the intersection of <math>\overline{ED}</math> and <math>\overline{BC}</math>. What is the area of <math>BFDG</math>?
+
In rectangle <math>ABCD</math>, <math>AB=6</math>, <math>AD=30</math>, and <math>G</math> is the midpoin
 +
of <math>\overline{AD}</math>. Segment <math>AB</math> is extended 2 units beyond <math>B</math> to point <math>E</math>, and <math>F</math> is the intersection of <math>\overline{ED}</math> and <math>\overline{BC}</math>. What is the area of <math>BFDG</math>?
  
 
<math>\textbf{(A)}\ \frac{133}{2}\qquad\textbf{(B)}\ 67\qquad\textbf{(C)}\ \frac{135}{2}\qquad\textbf{(D)}\ 68\qquad\textbf{(E)}\ \frac{137}{2}</math>
 
<math>\textbf{(A)}\ \frac{133}{2}\qquad\textbf{(B)}\ 67\qquad\textbf{(C)}\ \frac{135}{2}\qquad\textbf{(D)}\ 68\qquad\textbf{(E)}\ \frac{137}{2}</math>

Revision as of 18:30, 29 January 2016

Problem

In rectangle $ABCD$, $AB=6$, $AD=30$, and $G$ is the midpoin

of $\overline{AD}$. Segment $AB$ is extended 2 units beyond $B$ to point $E$, and $F$ is the intersection of $\overline{ED}$ and $\overline{BC}$. What is the area of $BFDG$?

$\textbf{(A)}\ \frac{133}{2}\qquad\textbf{(B)}\ 67\qquad\textbf{(C)}\ \frac{135}{2}\qquad\textbf{(D)}\ 68\qquad\textbf{(E)}\ \frac{137}{2}$

Solution

The easiest way to find the area would be to find the area of $ABCD$ and subtract the areas of $ABG$ and $CDF.$ You can easily get the area of $ABG$ because you know $AB=6$ and $AG=15$, so $ABG$'s area is $15\cdot 6/2=45$. However, for triangle $CDF,$ you don't know $CF.$ However, you can note that triangle $BEF$ is similar to triangle $CDF$ through AA. You see that $BE/DC=1/3.$ So, You can do $BF+3BF=30$ for $BF=15/2,$ and $CF=3BF=3(15/2)=45/2.$ Now, you can find the area of $CDF,$ which is $135/2.$ Now, you do $[ABCD]-[ABG]-[CDF]=180-45-135/2=135-135/2=\boxed{135/2},$ which is answer choice (C).

See Also

2012 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png