Difference between revisions of "2006 AIME A Problems/Problem 4"

(Solution)
m (wikify)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
Let <math> (a_1,a_2,a_3,\ldots,a_{12}) </math> be a permutation of <math> (1,2,3,\ldots,12) </math> for which
+
Let <math> (a_1,a_2,a_3,\ldots,a_{12}) </math> be a [[permutation]] of <math> (1,2,3,\ldots,12) </math> for which
  
<center><math> a_1>a_2>a_3>a_4>a_5>a_6 \mathrm{\  and \ } a_6<a_7<a_8<a_9<a_{10}<a_{11}<a_{12}. </math></center>
+
<div style="text-align:center;"><math> a_1>a_2>a_3>a_4>a_5>a_6 \mathrm{\  and \ } a_6<a_7<a_8<a_9<a_{10}<a_{11}<a_{12}. </math></div>
  
 
An example of such a permutation is <math> (6,5,4,3,2,1,7,8,9,10,11,12). </math> Find the number of such permutations.
 
An example of such a permutation is <math> (6,5,4,3,2,1,7,8,9,10,11,12). </math> Find the number of such permutations.
Line 8: Line 8:
 
== Solution ==
 
== Solution ==
  
Clearly, <math>a_6=1</math>.  Now, consider selecting <math>5</math> of the remaining <math>11</math> values.  Sort these values in descending order, and sort the other <math>6</math> values in ascending order.  Now, let the <math>5</math> selected values be <math>a_1</math> through <math>a_5</math>, and let the remaining <math>6</math> be <math>a_7</math> through <math>{a_{12}}</math>.  It is now clear that there is a bijection between the number of ways to select <math>5</math> values from <math>11</math> and ordered 12-tuples <math>(a_1,\ldots,a_{12})</math>.  Thus, there will be <math>{11 \choose 5}=462</math> such ordered 12-tuples.
+
Clearly, <math>a_6=1</math>.  Now, consider selecting <math>5</math> of the remaining <math>11</math> values.  Sort these values in descending order, and sort the other <math>6</math> values in ascending order.  Now, let the <math>5</math> selected values be <math>a_1</math> through <math>a_5</math>, and let the remaining <math>6</math> be <math>a_7</math> through <math>{a_{12}}</math>.  It is now clear that there is a [[bijection]] between the number of ways to select <math>5</math> values from <math>11</math> and ordered 12-tuples <math>(a_1,\ldots,a_{12})</math>.  Thus, there will be <math>{11 \choose 5}=462</math> such ordered 12-tuples.
  
 
== See also ==
 
== See also ==
*[[2006 AIME II Problems]]
+
{{AIME box|year=2006|n=II|num-b=3|num-a=5}}
  
 
[[Category:Intermediate Combinatorics Problems]]
 
[[Category:Intermediate Combinatorics Problems]]

Revision as of 15:57, 12 March 2007

Problem

Let $(a_1,a_2,a_3,\ldots,a_{12})$ be a permutation of $(1,2,3,\ldots,12)$ for which

$a_1>a_2>a_3>a_4>a_5>a_6 \mathrm{\  and \ } a_6<a_7<a_8<a_9<a_{10}<a_{11}<a_{12}.$

An example of such a permutation is $(6,5,4,3,2,1,7,8,9,10,11,12).$ Find the number of such permutations.

Solution

Clearly, $a_6=1$. Now, consider selecting $5$ of the remaining $11$ values. Sort these values in descending order, and sort the other $6$ values in ascending order. Now, let the $5$ selected values be $a_1$ through $a_5$, and let the remaining $6$ be $a_7$ through ${a_{12}}$. It is now clear that there is a bijection between the number of ways to select $5$ values from $11$ and ordered 12-tuples $(a_1,\ldots,a_{12})$. Thus, there will be ${11 \choose 5}=462$ such ordered 12-tuples.

See also

2006 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions