Difference between revisions of "2009 AIME I Problems/Problem 5"
Jacksonjimi (talk | contribs) m (→Solution 2) |
m (Come on, guys. You've graduated from Beast Academy.) |
||
Line 32: | Line 32: | ||
<cmath>\frac {AM}{LP}=\frac {AB}{LB}=\frac {AL+LB}{LB}=\frac {AL}{LB}+1</cmath> | <cmath>\frac {AM}{LP}=\frac {AB}{LB}=\frac {AL+LB}{LB}=\frac {AL}{LB}+1</cmath> | ||
− | Now | + | Now let's apply the angle bisector theorem. |
<cmath>\frac {AL}{LB}=\frac {AC}{BC}=\frac {450}{300}=\frac {3}{2}</cmath> | <cmath>\frac {AL}{LB}=\frac {AC}{BC}=\frac {450}{300}=\frac {3}{2}</cmath> |
Revision as of 17:13, 26 October 2016
Contents
Problem
Triangle has and . Points and are located on and respectively so that , and is the angle bisector of angle . Let be the point of intersection of and , and let be the point on line for which is the midpoint of . If , find .
Solution 1
Since is the midpoint of and , quadrilateral is a parallelogram, which implies and is similar to
Thus,
Now let's apply the angle bisector theorem.
Solution 2
Using the diagram above, we can solve this problem by using mass points. By angle bisector theorem: So, we can weight as and as and as . Since is the midpoint of and , the weight of is equal to the weight of , which equals . Also, since the weight of is and is , we can weight as .
By the definition of mass points, By vertical angles, angle angle . Also, it is given that and .
By the SAS congruence, triangle = triangle . So, = = . Since ,
See also
2009 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.