Difference between revisions of "1988 AIME Problems/Problem 9"

(Solution)
(Solution)
Line 6: Line 6:
 
*<math>4</math>: Then our cube must be in the form of <math>(100k + 42)^3 \equiv 3(100k)(42)^2 + 42^3 \equiv 200k + 88 \pmod{1000}</math>. Hence the lowest possible value for the hundreds digit is <math>4</math>, and so <math>442</math> is a valid solution.  
 
*<math>4</math>: Then our cube must be in the form of <math>(100k + 42)^3 \equiv 3(100k)(42)^2 + 42^3 \equiv 200k + 88 \pmod{1000}</math>. Hence the lowest possible value for the hundreds digit is <math>4</math>, and so <math>442</math> is a valid solution.  
 
*<math>9</math>: Then our cube is <math>(100k + 92)^3 \equiv 3(100k)(92)^2 + 92^3 \equiv 200k + 688 \pmod{1000}</math>. The lowest possible value for the hundreds digit is <math>1</math>, and we get <math>192</math>. Hence, since <math>192 < 442</math>, the answer is <math>\fbox{192}</math>
 
*<math>9</math>: Then our cube is <math>(100k + 92)^3 \equiv 3(100k)(92)^2 + 92^3 \equiv 200k + 688 \pmod{1000}</math>. The lowest possible value for the hundreds digit is <math>1</math>, and we get <math>192</math>. Hence, since <math>192 < 442</math>, the answer is <math>\fbox{192}</math>
 +
 +
==Solution 2==
 +
<math>n^3 \equiv 888 \pmod{1000} \implies n^3 \equiv 0 \pmod 8</math> and <math>n^3 \equiv 13 \pmod{125}</math>.
 +
<math>n \equiv 2 \pmod 5</math> due to the last digit of <math>n^3</math>. Let <math>n = 5a + 2</math>. By expanding, <math>125a^3 + 150a^2 + 60a + 8 \equiv 13 \pmod{125} \implies 5a^2 + 12a \equiv 1 \pmod{25}</math>.
 +
 +
By looking at the last digit again, we see <math>a \equiv 3 \pmod5</math>, so we let <math>a = 5a_1 + 3</math> where <math>a_1 \in \mathbb{Z^+}</math>. Plugging this in to <math>5a^2 + 12a \equiv 1 \pmod{25}</math> gives <math>10a_1 + 6 \equiv 1 \pmod{25}</math>. Obviously, <math>a_1 \equiv 2 \pmod 5</math>, so we let <math>a_1 = 5a_2 + 2</math> where <math>a_2</math> can be any non-negative integer.
 +
 +
Therefore, <math>n = 2 + 5(3+ 5(2+5a_2)) = 125a_2 + 67</math>. <math>n</math> must also be a multiple of <math>8</math>, so <math>125a_2 + 67 \equiv 5a_2 + 3 \pmod 8 \implies a_2 = 1,9,17 \ldots</math>. Therefore, the minimum of <math>n</math> is <math>125 + 67 = \boxed{192}</math>.
  
 
== See also ==
 
== See also ==

Revision as of 20:30, 19 September 2017

Problem

Find the smallest positive integer whose cube ends in $888$.

Solution

A little bit of checking tells us that the units digit must be 2. Now our cube must be in the form of $(10k + 2)^3$; using the binomial theorem gives us $1000k^3 + 600k^2 + 120k + 8$. Since we are looking for the tens digit, $\mod{100}$ we get $20k + 8 \equiv 88 \pmod{100}$. This is true if the tens digit is either $4$ or $9$. Casework:

  • $4$: Then our cube must be in the form of $(100k + 42)^3 \equiv 3(100k)(42)^2 + 42^3 \equiv 200k + 88 \pmod{1000}$. Hence the lowest possible value for the hundreds digit is $4$, and so $442$ is a valid solution.
  • $9$: Then our cube is $(100k + 92)^3 \equiv 3(100k)(92)^2 + 92^3 \equiv 200k + 688 \pmod{1000}$. The lowest possible value for the hundreds digit is $1$, and we get $192$. Hence, since $192 < 442$, the answer is $\fbox{192}$

Solution 2

$n^3 \equiv 888 \pmod{1000} \implies n^3 \equiv 0 \pmod 8$ and $n^3 \equiv 13 \pmod{125}$. $n \equiv 2 \pmod 5$ due to the last digit of $n^3$. Let $n = 5a + 2$. By expanding, $125a^3 + 150a^2 + 60a + 8 \equiv 13 \pmod{125} \implies 5a^2 + 12a \equiv 1 \pmod{25}$.

By looking at the last digit again, we see $a \equiv 3 \pmod5$, so we let $a = 5a_1 + 3$ where $a_1 \in \mathbb{Z^+}$. Plugging this in to $5a^2 + 12a \equiv 1 \pmod{25}$ gives $10a_1 + 6 \equiv 1 \pmod{25}$. Obviously, $a_1 \equiv 2 \pmod 5$, so we let $a_1 = 5a_2 + 2$ where $a_2$ can be any non-negative integer.

Therefore, $n = 2 + 5(3+ 5(2+5a_2)) = 125a_2 + 67$. $n$ must also be a multiple of $8$, so $125a_2 + 67 \equiv 5a_2 + 3 \pmod 8 \implies a_2 = 1,9,17 \ldots$. Therefore, the minimum of $n$ is $125 + 67 = \boxed{192}$.

See also

1988 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png