Difference between revisions of "2016 AMC 8 Problems/Problem 12"

m
Line 4: Line 4:
  
 
==Solution==
 
==Solution==
{{solution}}
+
 
{{AMC8 box|year=2016|num-b=11|num-a=13}}
+
Set the number of children to a number that is divisible by two, four, and three. In this question, the number of children in the school is not a specific number because there are no actual numbers in the question, only ratios.This way, we can calculate the answer without dealing with decimals.
 +
<math>120</math> is a number that works. There will be <math>60</math> girls and <math>60</math> boys. So, there will be
 +
<math>60\cdot\frac{3}{4}</math> = <math>45</math> girls on the trip and <math>60\cdot\frac{2}{3}</math> = <math>40</math> boys on the trip.
 +
The total number of children on the trip is <math>85</math>, so the fraction of girls on the trip is <math>\frac{45}{85}</math> or <math>\boxed{(B) \frac{9}{17}}</math>
 +
{{AMC8 box|year=2016|num-b=1|num-a=3}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 09:17, 23 November 2016

12. Jefferson Middle School has the same number of boys and girls. Three-fourths of the girls and two-thirds of the boys went on a field trip. What fraction of the students were girls?

$\textbf{(A) }\frac{1}{2}\qquad\textbf{(B) }\frac{9}{17}\qquad\textbf{(C) }\frac{7}{13}\qquad\textbf{(D) }\frac{2}{3}\qquad \textbf{(E) }\frac{14}{15}$

Solution

Set the number of children to a number that is divisible by two, four, and three. In this question, the number of children in the school is not a specific number because there are no actual numbers in the question, only ratios.This way, we can calculate the answer without dealing with decimals. $120$ is a number that works. There will be $60$ girls and $60$ boys. So, there will be $60\cdot\frac{3}{4}$ = $45$ girls on the trip and $60\cdot\frac{2}{3}$ = $40$ boys on the trip. The total number of children on the trip is $85$, so the fraction of girls on the trip is $\frac{45}{85}$ or $\boxed{(B) \frac{9}{17}}$

2016 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png