GET READY FOR THE AMC 12 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 12 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2017 AMC 12B Problems"

(Problem 8)
m (Problem 12)
Line 76: Line 76:
 
What is the sum of the roots of <math>z^{12}=64</math> that have a positive real part?  
 
What is the sum of the roots of <math>z^{12}=64</math> that have a positive real part?  
  
<math>\textbf{(A)}\ 2 \qquad \textbf{(B)}\ 4 \qquad \textbf{(C)}\ \sqrt{2}+2\sqrt{3} \qquad \textbf{(D)}\ 2\sqrt{2}+\sqrt{6} \qquad \textbf{(E)}\ (1+\sqrt{3})(1+\sqrt{3})i</math>
+
<math>\textbf{(A)}\ 2 \qquad \textbf{(B)}\ 4 \qquad \textbf{(C)}\ \sqrt{2}+2\sqrt{3} \qquad \textbf{(D)}\ 2\sqrt{2}+\sqrt{6} \qquad \textbf{(E)}\ (1+\sqrt{3}) + (1+\sqrt{3})i</math>
  
 
[[2017 AMC 12B Problems/Problem 12|Solution]]
 
[[2017 AMC 12B Problems/Problem 12|Solution]]

Revision as of 21:03, 16 February 2017

WORK IN PROGRESS

2017 AMC 12B (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the test if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

Kymbrea's comic book collection currently has $30$ comic books in it, and she is adding to her collection at the rate of $2$ comic books per month. LaShawn's collection currently has $10$ comic books in it, and he is adding to his collection at the rate of $6$ comic books per month. After how many months will LaShawn's collection have twice as many comic books as Kymbrea's?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 4\qquad\textbf{(C)}\ 5\qquad\textbf{(D)}\ 20\qquad\textbf{(E)}\ 25$

Problem 2

Real numbers $x$, $y$, and $z$ satify the inequalities $0<x<1$, $-1<y<0$, and $1<z<2$. Which of the following numbers is necessarily positive?

$\textbf{(A)}\ y+x^2\qquad\textbf{(B)}\ y+xz\qquad\textbf{(C)}\ y+y^2\qquad\textbf{(D)}\ y+2y^2\qquad\textbf{(E)}\ y+z$

Solution

Problem 3

Supposed that $x$ and $y$ are nonzero real numbers such that $\frac{3x+y}{x-3y}=-2$. What is the value of $\frac{x+3y}{3x-y}$?

$\textbf{(A)}\ -3\qquad\textbf{(B)}\ -1\qquad\textbf{(C)}\ 1\qquad\textbf{(D)}\ 2\qquad\textbf{(E)}\ 3$

Solution

Problem 4

Samia set off on her bicycle to visit her friend, traveling at an average speed of $17$ kilometers per hour. When she had gone half the distance to her friend's house, a tire went flat, and she walked the rest of the way at $5$ kilometers per hour. In all it took her $44$ minutes to reach her friend's house. In kilometers rounded to the nearest tenth, how far did Samia walk?

$\textbf{(A)}\ 2.0\qquad\textbf{(B)}\ 2.2\qquad\textbf{(C)}\ 2.8\qquad\textbf{(D)}\ 3.4\qquad\textbf{(E)}\ 4.4$

Solution

Problem 5

Problem 6

The circle having $(0,0)$ and $(8,6)$ as the endpoints of a diameter intersects the $x$-axis at a second point. What is the $x$-coordinate of this point?

$\textbf{(A)}\ 4\sqrt{2} \qquad \textbf{(B)}\ 6\qquad \textbf{(C)}\ 5\sqrt{2}\qquad \textbf{(D)}\ 8\qquad \textbf{(E)}\ 6\sqrt{2}$

Solution

Problem 7

The functions $\sin(x)$ and $\cos(x)$ are periodic with least period $2\pi$. What is the least period of the function $\cos(\sin(x))$?

$\textbf{(A)}\ \frac{\sqrt{3}-1}{2}\qquad\textbf{(B)}\ \frac{1}{2}\qquad\textbf{(C)}\ \frac{\sqrt{5}-1}{2} \qquad\textbf{(D)}\ \frac{\sqrt{2}}{2} \qquad\textbf{(E)}\ \frac{\sqrt{6}-1}{2}$

Solution

Problem 8

The ratio of the short side of a certain rectangle to the long side is equal to the ratio of the long side tho the diagonal. What is the square of the ratio of the short side to the long side of this rectangle?

$\textbf{(A)}\ \frac{\sqrt{3}-1}{2}\qquad\textbf{(B)}\ \frac{1}{2}\qquad\textbf{(C)}\ \frac{\sqrt{5}-1}{2} \qquad\textbf{(D)}\ \frac{\sqrt{2}}{2} \qquad\textbf{(E)}\ \frac{\sqrt{6}-1}{2}$

Solution

Problem 9

Problem 10

At Typico High School, $60\%$ of the students like dancing, and the rest dislike it. Of those who like dancing, $80\%$ say that they like it, and the rest say that they dislike it. Of those who dislike dancing, $90\%$ say that they dislike it, and the rest say that they like it. What fraction of students who say they dislike dancing actually like it?

$\textbf{(A)}\ 10\%\qquad\textbf{(B)}\ 12\%\qquad\textbf{(C)}\ 20\%\qquad\textbf{(D)}\ 25\%\qquad\textbf{(E)}\ 33\frac{1}{3}\%$

Solution

Problem 11

Call a positive integer $monotonous$ if it is a one-digit number or its digits, when read from left to right, form either a strictly increasing or a strictly decreasing sequence. For example, $3$, $23578$, and $987620$ are monotonous, but $88$, $7434$, and $23557$ are not. How many monotonous positive integers are there?

$\textbf{(A)}\ 1024\qquad\textbf{(B)}\ 1524\qquad\textbf{(C)}\ 1533\qquad\textbf{(D)}\ 1536\qquad\textbf{(E)}\ 2048$

Solution

Problem 12

What is the sum of the roots of $z^{12}=64$ that have a positive real part?

$\textbf{(A)}\ 2 \qquad \textbf{(B)}\ 4 \qquad \textbf{(C)}\ \sqrt{2}+2\sqrt{3} \qquad \textbf{(D)}\ 2\sqrt{2}+\sqrt{6} \qquad \textbf{(E)}\ (1+\sqrt{3}) + (1+\sqrt{3})i$

Solution

Problem 13

Problem 14

An ice-cream novelty item consists of a cup in the shape of a 4-inch-tall frustum of a right circular cone, with a 2-inch-diameter base at the bottom and a 4-inch-diameter base at the top, packed solid with ice cream, together with a solid cone of ice cream of height 4 inches, whose base, at the bottom, is the top base of the frustum. What is the total volume of the ice cream, in cubic inches?

$\textbf{(A)}\ 8\pi \qquad \textbf{(B)}\ \frac{28\pi}{3} \qquad \textbf{(C)}\ 12\pi \qquad \textbf{(D)}\ 14\pi \qquad \textbf{(E)}\ \frac{44\pi}{3}$

Solution

Problem 15

Let $ABC$ be an equilateral triangle. Extend side $\overline{AB}$ beyond $B$ to a point $B'$ so that $BB'=3AB$. Similarly, extend side $\overline{BC}$ beyond $C$ to a point $C'$ so that $CC'=3BC$, and extend side $\overline{CA}$ beyond $A$ to a point $A'$ so that $AA'=3CA$. What is the ratio of the area of $\triangle A'B'C'$ to the area of $\triangle ABC$?

$\textbf{(A)}\ 9:1\qquad\textbf{(B)}\ 16:1\qquad\textbf{(C)}\ 25:1\qquad\textbf{(D)}\ 36:1\qquad\textbf{(E)}\ 37:1$

Solution

Problem 16

The number $21!=51,090,942,171,709,440,000$ has over $60,000$ positive integer divisors. One of them is chosen at random. What is the probability that it is odd?

$\textbf{(A)}\ \frac{1}{21} \qquad \textbf{(B)}\ \frac{1}{19} \qquad \textbf{(C)}\ \frac{1}{18} \qquad \textbf{(D)}\ \frac{1}{2} \qquad \textbf{(E)}\ \frac{11}{21}$

Solution

Problem 17

A coin is biased in such a way that on each toss the probability of heads is $\frac{2}{3}$ and the probability of tails is $\frac{1}{3}$. The outcomes of the tosses are independent. A player has the choice of playing Game A or Game B. In Game A she tosses the coin three times and wins if all three outcomes are the same. In Game B she tosses the coin four times and wins if both the outcomes of the first and second tosses are the same and the outcomes of the third and fourth tosses are the same. How do the chances of winning Game A compare to the chances of winning Game B?

$\textbf{(A)}$ The probability of winning Game A is $\frac{4}{81}$ less than the probability of winning Game B.

$\textbf{(B)}$ The probability of winning Game A is $\frac{2}{81}$ less than the probability of winning Game B.

$\textbf{(C)}$ The probabilities are the same.

$\textbf{(D)}$ The probability of winning Game A is $\frac{2}{81}$ greater than the probability of winning Game B.

$\textbf{(E)}$ The probability of winning Game A is $\frac{4}{81}$ greater than the probability of winning Game B.

Solution

Problem 18

The diameter $AB$ of a circle of radius $2$ is extended to a point $D$ outside the circle so that $BD=3$. Point $E$ is chosen so that $ED=5$ and line $ED$ is perpendicular to line $AD$. Segment $AE$ intersects the circle at a point $C$ between $A$ and $E$. What is the area of $\triangle  ABC$?

$\textbf{(A)}\ \frac{120}{37}\qquad\textbf{(B)}\ \frac{140}{39}\qquad\textbf{(C)}\ \frac{145}{39}\qquad\textbf{(D)}\ \frac{140}{37}\qquad\textbf{(E)}\ \frac{120}{31}$

Solution

Problem 19

Let $N=123456789101112\dots4344$ be the $79$-digit number that is formed by writing the integers from $1$ to $44$ in order, one after the other. What is the remainder when $N$ is divided by $45$?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 4\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 18\qquad\textbf{(E)}\ 44$

Solution

Problem 20

Real numbers $x$ and $y$ are chosen independently and uniformly at random from the interval $(0,1)$. What is the probability that $\lfloor\log_2x\rfloor=\lfloor\log_2y\rfloor$, where $\lfloor r\rfloor$ denotes the greatest integer less than or equal to the real number $r$ ?

$\textbf{(A)}\ \frac{1}{8}\qquad\textbf{(B)}\ \frac{1}{6}\qquad\textbf{(C)}\ \frac{1}{4}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{1}{2}$

Solution

Problem 21

Last year Isabella took $7$ math tests and received $7$ different scores, each an integer between $91$ and $100$, inclusive. After each test she noticed that the average of her test scores was an integer. Her score on the seventh test was $95$. What was her score on the sixth test?

$\textbf{(A)}\ 92\qquad\textbf{(B)}\ 94\qquad\textbf{(C)}\ 96\qquad\textbf{(D)}\ 98\qquad\textbf{(E)}\ 100$

Solution

Problem 22

Abby, Bernardo, Carl, and Debra play a game in which each of them starts with four coins. The game consists of four rounds. In each round, four balls are placed in an urn---one green, one red, and two white. The players each draw a ball at random without replacement. Whoever gets the green ball gives one coin to whoever gets the red ball. What is the probability that, at the end of the fourth round, each of the players has four coins?

$\textbf{(A)}\quad \dfrac{7}{576} \qquad \qquad \textbf{(B)}\quad \dfrac{5}{192} \qquad\qquad \textbf{(C)}\quad \dfrac{1}{36} \qquad\qquad \textbf{(D)}\quad \dfrac{5}{144} \qquad\qquad\textbf{(E)}\quad \dfrac{7}{48}$

Problem 23

The graph of $y=f(x)$, where $f(x)$ is a polynomial of degree $3$, contains points $A(2,4)$, $B(3,9)$, and $C(4,16)$. Lines $AB$, $AC$, and $BC$ intersect the graph again at points $D$, $E$, and $F$, respectively, and the sum of the $x$-coordinates of $D$, $E$, and $F$ is 24. What is $f(0)$?

$\textbf{(A)}\quad {-2} \qquad \qquad \textbf{(B)}\quad 0 \qquad\qquad \textbf{(C)}\quad 2 \qquad\qquad \textbf{(D)}\quad \dfrac{24}5 \qquad\qquad\textbf{(E)}\quad 8$

Problem 24

Problem 25

See also

2017 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
2017 AMC 12A Problems
Followed by
2018 AMC 12A Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png