# 2017 AMC 10B Problems/Problem 4

## Problem

Supposed that $x$ and $y$ are nonzero real numbers such that $\frac{3x+y}{x-3y}=-2$. What is the value of $\frac{x+3y}{3x-y}$? $\textbf{(A)}\ -3\qquad\textbf{(B)}\ -1\qquad\textbf{(C)}\ 1\qquad\textbf{(D)}\ 2\qquad\textbf{(E)}\ 3$

## Solution 1

Rearranging, we find $3x+y=-2x+6y$, or $5x=5y\implies x=y$. Substituting, we can convert the second equation into $\frac{x+3x}{3x-x}=\frac{4x}{2x}=\boxed{\textbf{(D)}\ 2}$.

## Solution 2

Substituting each $x$ and $y$ with $1$, we see that the given equation holds true, as $\frac{3(1)+1}{1-3(1)} = -2$. Thus, $\frac{x+3y}{3x-y}=\boxed{\textbf{(D)}\ 2}$

## Solution 3

Let $y=ax$. The first equation converts into $\frac{(3+a)x}{(1-3a)x}=-2$, which simplifies to $3+a=-2(1-3a)$. After a bit of algebra we found out $a=1$, which means that $x=y$. Substituting $y=x$ into the second equation it becomes $\frac{4x}{2x}=\boxed{\textbf{(D)}\ 2}$ - mathleticguyyy

~ pi_is_3.14

~savannahsolver

~IceMatrix

## See Also

 2017 AMC 10B (Problems • Answer Key • Resources) Preceded byProblem 3 Followed byProblem 5 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 10 Problems and Solutions
 2017 AMC 12B (Problems • Answer Key • Resources) Preceded byProblem 2 Followed byProblem 4 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS