Difference between revisions of "2016 AIME II Problems/Problem 10"
m (→Solution 3) |
|||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
Triangle <math>ABC</math> is inscribed in circle <math>\omega</math>. Points <math>P</math> and <math>Q</math> are on side <math>\overline{AB}</math> with <math>AP<AQ</math>. Rays <math>CP</math> and <math>CQ</math> meet <math>\omega</math> again at <math>S</math> and <math>T</math> (other than <math>C</math>), respectively. If <math>AP=4,PQ=3,QB=6,BT=5,</math> and <math>AS=7</math>, then <math>ST=\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | Triangle <math>ABC</math> is inscribed in circle <math>\omega</math>. Points <math>P</math> and <math>Q</math> are on side <math>\overline{AB}</math> with <math>AP<AQ</math>. Rays <math>CP</math> and <math>CQ</math> meet <math>\omega</math> again at <math>S</math> and <math>T</math> (other than <math>C</math>), respectively. If <math>AP=4,PQ=3,QB=6,BT=5,</math> and <math>AS=7</math>, then <math>ST=\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | ||
Revision as of 16:19, 22 March 2018
Problem
Triangle is inscribed in circle . Points and are on side with . Rays and meet again at and (other than ), respectively. If and , then , where and are relatively prime positive integers. Find .
Solution 1
Let , , and . Note that since we have , so by the Ratio Lemma Similarly, we can deduce and hence .
Now Law of Sines on , , and yields Hence so Hence and the requested answer is .
Edit: Note that the finish is much simpler. Once you get, , so .
Solution 2
Projecting through we have which easily gives
Solution 3
By Ptolemy's Theorem applied to quadrilateral , we find Therefore, in order to find , it suffices to find . We do this using similar triangles, which can be found by using Power of a Point theorem.
As , we find Therefore, .
As , we find Therefore, .
As , we find Therefore, .
As , we find Therefore, . Thus we find But now we can substitute in our previously found values for and , finding Substituting this into our original expression from Ptolemy's Theorem, we find Thus the answer is .
See also
2016 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.