Difference between revisions of "2013 AMC 8 Problems/Problem 15"

(Problem)
(Solution)
Line 1: Line 1:
==Solution==
+
==Problem==
<math>3^p + 3^4 = 90\\
 
3^p + 81 = 90\\
 
3^p = 9</math>
 
 
 
Therefore, <math>p = 2</math>.
 
 
 
<math>2^r + 44 = 76\\
 
2^r = 32</math>
 
 
 
Therefore, <math>r = 5</math>.
 
 
 
<math>5^3 + 6^s = 1421\\
 
125 + 6^s = 1421\\
 
6^s=1296</math>
 
 
 
To most people, it would not be immediately evident that <math>6^4 = 1296</math>, so we can multiply 6's until we get the desired number:
 
 
 
 
<math>6\cdot6=36</math>
 
<math>6\cdot6=36</math>
  
<math>6\cdot36=216</math>
+
Solve for s, x, and r.
 
 
<math>6\cdot216=1296=6^4</math>, so <math>s=4</math>.
 
 
 
Therefore the answer is <math>2\cdot5\cdot4=\boxed{\textbf{(B)}\ 40}</math>.
 
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2013|num-b=14|num-a=16}}
 
{{AMC8 box|year=2013|num-b=14|num-a=16}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 14:34, 5 November 2017

Problem

$6\cdot6=36$

Solve for s, x, and r.

See Also

2013 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png