Difference between revisions of "2013 AMC 8 Problems/Problem 15"
Liwufamily (talk | contribs) (→See Also) |
(→See Also) |
||
Line 8: | Line 8: | ||
<math>\textbf{(A)}\ 27 \qquad \textbf{(B)}\ 40 \qquad \textbf{(C)}\ 50 \qquad \textbf{(D)}\ 70 \qquad \textbf{(E)}\ 90</math> | <math>\textbf{(A)}\ 27 \qquad \textbf{(B)}\ 40 \qquad \textbf{(C)}\ 50 \qquad \textbf{(D)}\ 70 \qquad \textbf{(E)}\ 90</math> | ||
+ | ==Problem== | ||
+ | Solve for <math>p</math>, <math>r</math>, and <math>s</math>. | ||
+ | If <math>3^p+3^4=90</math>, <math>2^r+44=76</math>, and <math>5^3+6^s=1421</math>, what is the product of <math>p</math>, <math>r</math>, and <math>s</math>. | ||
+ | |||
+ | <math>\textbf{(A)}\ 27 \qquad \textbf{(B)}\ 40 \qquad \textbf{(C)}\ 50 \qquad \textbf{(D)}\ 70 \qquad \textbf{(E)}\ 90</math> | ||
+ | ==Solution== | ||
+ | First, we're going to solve for <math>p</math>. Start with <math>3^p+3^4=90</math>. Then, change 3^4 to <math>81</math>. Subtract <math>81</math> from both sides to get <math>3^p=9</math> and see that <math>p</math> is <math>2</math>. Now, solve for <math>r</math>. Since <math>2^r+44=76</math>, <math>2^r</math> must equal <math>32</math>, so <math>r=5</math>. Now, solve for <math>s</math>. <math>5^3+6^s=1421</math> can be simplified to <math>125+6^s=1421</math> which simplifies further to <math>6^s=1296</math>. Therefore, <math>s=4</math>. <math>prs</math> equals <math>2*5*4</math> which equals <math>40</math>. So, the answer is <math>\boxed{\textbf{(B)}\ 40}</math>. | ||
==See Also== | ==See Also== | ||
{{AMC8 box|year=2013|num-b=14|num-a=16}} | {{AMC8 box|year=2013|num-b=14|num-a=16}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 20:43, 11 November 2017
Problem
Solve for s, x, and r.
If , , and , what is the product of , , and ?
Problem
Solve for , , and . If , , and , what is the product of , , and .
Solution
First, we're going to solve for . Start with . Then, change 3^4 to . Subtract from both sides to get and see that is . Now, solve for . Since , must equal , so . Now, solve for . can be simplified to which simplifies further to . Therefore, . equals which equals . So, the answer is .
See Also
2013 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.