Difference between revisions of "2005 AMC 10A Problems/Problem 15"
m (fixed typo) |
|||
Line 7: | Line 7: | ||
<math> 3! \cdot 5! \cdot 7! = (3\cdot2\cdot1) \cdot (5\cdot4\cdot3\cdot2\cdot1) \cdot (7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1) = 2^{8}\cdot3^{4}\cdot5^{2}\cdot7^{1}</math> | <math> 3! \cdot 5! \cdot 7! = (3\cdot2\cdot1) \cdot (5\cdot4\cdot3\cdot2\cdot1) \cdot (7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1) = 2^{8}\cdot3^{4}\cdot5^{2}\cdot7^{1}</math> | ||
− | Therefore, a perfect cube that divides <math> 3! \cdot 5! \cdot 7! </math> must be in the form <math>2^{a}\cdot3^{b}\cdot5^{c}\cdot7^{d}</math> where <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> are | + | Therefore, a [[perfect cube]] that divides <math> 3! \cdot 5! \cdot 7! </math> must be in the form <math>2^{a}\cdot3^{b}\cdot5^{c}\cdot7^{d}</math> where <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> are [[nonnegative]] [[multiple]]s of <math>3</math> that are less than or equal to <math>8</math>, <math>4</math>, <math>2</math> and <math>1</math>, respectively. |
So: | So: | ||
Line 20: | Line 20: | ||
− | So the number of perfect cubes that divide <math> 3! \cdot 5! \cdot 7! </math> is <math>3\cdot2\cdot1\cdot1 = 6 \Rightarrow E</math> | + | So the number of perfect cubes that divide <math> 3! \cdot 5! \cdot 7! </math> is <math>3\cdot2\cdot1\cdot1 = 6 \Rightarrow \mathrm{(E)}</math> |
==See Also== | ==See Also== | ||
Line 28: | Line 28: | ||
*[[2005 AMC 10A Problems/Problem 16|Next Problem]] | *[[2005 AMC 10A Problems/Problem 16|Next Problem]] | ||
+ | |||
+ | *[[Factorial]] | ||
+ | |||
+ | *[[Prime factorization]] | ||
+ | |||
+ | |||
+ | [[Category:Introductory Combinatorics Problems]] | ||
+ | [[Category:Introductory Number Theory Problems]] |
Revision as of 10:04, 2 August 2006
Problem
How many positive cubes divide ?
Solution
Therefore, a perfect cube that divides must be in the form where , , , and are nonnegative multiples of that are less than or equal to , , and , respectively.
So:
( posibilities)
( posibilities)
( posibility)
( posibility)
So the number of perfect cubes that divide is