# 2005 AMC 10A Problems/Problem 15

## Problem

How many positive cubes divide $3! \cdot 5! \cdot 7!$ ? $\textbf{(A) } 2\qquad \textbf{(B) } 3\qquad \textbf{(C) } 4\qquad \textbf{(D) } 5\qquad \textbf{(E) } 6$

## Solution 1 $3! \cdot 5! \cdot 7! = (3\cdot2\cdot1) \cdot (5\cdot4\cdot3\cdot2\cdot1) \cdot (7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1) = 2^{8}\cdot3^{4}\cdot5^{2}\cdot7^{1}$

Therefore, a perfect cube that divides $3! \cdot 5! \cdot 7!$ must be in the form $2^{a}\cdot3^{b}\cdot5^{c}\cdot7^{d}$ where $a$, $b$, $c$, and $d$ are nonnegative multiples of $3$ that are less than or equal to $8, 5, 2$ and $1,$ respectively.

So: $a\in\{0,3,6\}$ ( $3$ possibilities) $b\in\{0,3\}$ ( $2$ possibilities) $c\in\{0\}$ ( $1$ possibility) $d\in\{0\}$( $1$ possibility)

So the number of perfect cubes that divide $3! \cdot 5! \cdot 7!$ is $3\cdot2\cdot1\cdot1 = \boxed{\textbf{(E) }6}$

## Solution 2 $3! \cdot 5! \cdot 7! = (3\cdot2\cdot1) \cdot (5\cdot4\cdot3\cdot2\cdot1) \cdot (7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1)$

In the expression, we notice that there are 3 $3's$, 3 $2's$, and 3 $1's$. This gives us our first 3 cubes: $3^3$, $2^3$, and $1^3$.

However, we can also multiply smaller numbers in the expression to make bigger expressions. For example, $(2 \cdot 2) \cdot 4 \cdot 4=4 \cdot 4 \cdot 4 = 4^3$ (one 2 comes from the $3!$, and the other from the $5!$). Using this method, we find: $(3 \cdot 2) \cdot (3 \cdot 2) \cdot 6 = 6^3$

and $(3 \cdot 4) \cdot (3 \cdot 4) \cdot (2 \cdot 6) = 12^3$

So, we have 6 cubes total: $1^3 ,2^3, 3^3, 4^3, 6^3,$ and $12^3$ for a total of $\boxed{\textbf{(E) }6}$ cubes

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 