Difference between revisions of "2006 AMC 10B Problems/Problem 15"

m (added category)
m (<asy>s by dragon96)
Line 2: Line 2:
 
Rhombus <math>ABCD</math> is similar to rhombus <math>BFDE</math>. The area of rhombus <math>ABCD</math> is <math>24</math> and <math> \angle BAD = 60^\circ </math>. What is the area of rhombus <math>BFDE</math>?  
 
Rhombus <math>ABCD</math> is similar to rhombus <math>BFDE</math>. The area of rhombus <math>ABCD</math> is <math>24</math> and <math> \angle BAD = 60^\circ </math>. What is the area of rhombus <math>BFDE</math>?  
  
[[Image:2006amc10b15.gif]]
+
<!-- [[Image:2006amc10b15.gif]] -->
 
+
<asy> defaultpen(linewidth(0.7)+fontsize(10)); size(120);
 +
pair A=origin, B=(2,0), C=(3, sqrt(3)), D=(1, sqrt(3)), E=(1, 1/sqrt(3)), F=(2, 2/sqrt(3));
 +
pair point=(3/2, sqrt(3)/2);
 +
draw(B--C--D--A--B--F--D--E--B);
 +
label("$A$", A, dir(point--A));
 +
label("$B$", B, dir(point--B));
 +
label("$C$", C, dir(point--C));
 +
label("$D$", D, dir(point--D));
 +
label("$E$", E, dir(point--E));
 +
label("$F$", F, dir(point--F));
 +
</asy>
 
<math> \mathrm{(A) \ } 6\qquad \mathrm{(B) \ } 4\sqrt{3}\qquad \mathrm{(C) \ } 8\qquad \mathrm{(D) \ } 9\qquad \mathrm{(E) \ } 6\sqrt{3} </math>
 
<math> \mathrm{(A) \ } 6\qquad \mathrm{(B) \ } 4\sqrt{3}\qquad \mathrm{(C) \ } 8\qquad \mathrm{(D) \ } 9\qquad \mathrm{(E) \ } 6\sqrt{3} </math>
  
 
== Solution ==
 
== Solution ==
Using properties of a [[rhombus]]:
+
Using properties of a [[rhombus]], <math> \angle DAB = \angle DCB = 60 ^\circ </math> and <math> \angle ADC = \angle ABC = 120 ^\circ </math>. It is easy to see that rhombus <math>ABCD</math> is made up of [[equilateral triangle]]s <math>DAB</math> and <math>DCB</math>. Let the lengths of the sides of rhombus <math>ABCD</math> be <math>s</math>.  
 
 
<math> \angle DAB = \angle DCB = 60 ^\circ </math>.
 
 
 
<math> \angle ADC = \angle ABC = 120 ^\circ </math>.
 
 
 
It is easy to see that rhombus <math>ABCD</math> is made up of [[equilateral triangle]]s <math>DAB</math> and <math>DCB</math>.
 
  
Let the lengths of the sides of rhombus <math>ABCD</math> be <math>s</math>.
+
The longer [[diagonal]] of rhombus <math>BFDE</math> is <math>BD</math>. Since <math>BD</math> is a side of an equilateral triangle with a side length of <math>s</math>, <math> BD = s </math>. The longer diagonal of rhombus <math>ABCD</math> is <math>AC</math>. Since <math>AC</math> is twice the length of an altitude of of an equilateral triangle with a side length of <math>s</math>, <math> AC = 2 \cdot \frac{s\sqrt{3}}{2} = s\sqrt{3} </math>
  
The longer [[diagonal]] of rhombus <math>BFDE</math> is <math>BD</math>. Since <math>BD</math> is a side of an equilateral triangle with a side length of <math>s</math>, <math> BD = s </math>.
+
The ratio of the longer diagonal of rhombus <math>BFDE</math> to rhombus <math>ABCD</math> is <math> \frac{s}{s\sqrt{3}} = \frac{\sqrt{3}}{3}</math>. Therefore, the ratio of the [[area]] of rhombus <math>BFDE</math> to rhombus <math>ABCD</math> is <math> \left( \frac{\sqrt{3}}{3} \right) ^2 = \frac{1}{3} </math>
  
The longer diagonal of rhombus <math>ABCD</math> is <math>AC</math>. Since <math>AC</math> is twice the length of an altitude of of an equilateral triangle with a side length of <math>s</math>, <math> AC = 2 \cdot \frac{s\sqrt{3}}{2} = s\sqrt{3} </math>
+
Let <math>x</math> be the area of rhombus <math>BFDE</math>. Then <math> \frac{x}{24} = \frac{1}{3} </math>, so <math> x = 8 \Longrightarrow \boxed{\mathrm{(C)}}</math>.
 
 
The ratio of the longer diagonal of rhombus <math>BFDE</math> to rhombus <math>ABCD</math> is <math> \frac{s}{s\sqrt{3}} = \frac{\sqrt{3}}{3} </math>
 
 
 
Therefore, the ratio of the [[area]] of rhombus <math>BFDE</math> to rhombus <math>ABCD</math> is <math> \left( \frac{\sqrt{3}}{3} \right) ^2 = \frac{1}{3} </math>
 
 
 
Let <math>x</math> be the area of rhombus <math>BFDE</math>.  
 
 
 
<math> \frac{x}{24} = \frac{1}{3} </math>
 
 
 
<math> x = 8 \Rightarrow C </math>
 
  
 
== See Also ==
 
== See Also ==
*[[2006 AMC 10B Problems]]
+
{{AMC10 box|year=2006|ab=B|num-b=7|num-a=9}}
 
 
*[[2006 AMC 10B Problems/Problem 14|Previous Problem]]
 
 
 
*[[2006 AMC 10B Problems/Problem 16|Next Problem]]
 
  
 
[[Category:Introductory Geometry Problems]]
 
[[Category:Introductory Geometry Problems]]
 +
[[Category:Area Problems]]

Revision as of 23:26, 20 August 2011

Problem

Rhombus $ABCD$ is similar to rhombus $BFDE$. The area of rhombus $ABCD$ is $24$ and $\angle BAD = 60^\circ$. What is the area of rhombus $BFDE$?

[asy] defaultpen(linewidth(0.7)+fontsize(10)); size(120); pair A=origin, B=(2,0), C=(3, sqrt(3)), D=(1, sqrt(3)), E=(1, 1/sqrt(3)), F=(2, 2/sqrt(3)); pair point=(3/2, sqrt(3)/2); draw(B--C--D--A--B--F--D--E--B); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D)); label("$E$", E, dir(point--E)); label("$F$", F, dir(point--F)); [/asy] $\mathrm{(A) \ } 6\qquad \mathrm{(B) \ } 4\sqrt{3}\qquad \mathrm{(C) \ } 8\qquad \mathrm{(D) \ } 9\qquad \mathrm{(E) \ } 6\sqrt{3}$

Solution

Using properties of a rhombus, $\angle DAB = \angle DCB = 60 ^\circ$ and $\angle ADC = \angle ABC = 120 ^\circ$. It is easy to see that rhombus $ABCD$ is made up of equilateral triangles $DAB$ and $DCB$. Let the lengths of the sides of rhombus $ABCD$ be $s$.

The longer diagonal of rhombus $BFDE$ is $BD$. Since $BD$ is a side of an equilateral triangle with a side length of $s$, $BD = s$. The longer diagonal of rhombus $ABCD$ is $AC$. Since $AC$ is twice the length of an altitude of of an equilateral triangle with a side length of $s$, $AC = 2 \cdot \frac{s\sqrt{3}}{2} = s\sqrt{3}$

The ratio of the longer diagonal of rhombus $BFDE$ to rhombus $ABCD$ is $\frac{s}{s\sqrt{3}} = \frac{\sqrt{3}}{3}$. Therefore, the ratio of the area of rhombus $BFDE$ to rhombus $ABCD$ is $\left( \frac{\sqrt{3}}{3} \right) ^2 = \frac{1}{3}$

Let $x$ be the area of rhombus $BFDE$. Then $\frac{x}{24} = \frac{1}{3}$, so $x = 8 \Longrightarrow \boxed{\mathrm{(C)}}$.

See Also

2006 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions