Difference between revisions of "2005 AMC 10A Problems/Problem 24"
(added problem and solution) |
|||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | For each positive integer <math> m > 1 </math>, let <math>P(m)</math> denote the greatest prime factor | + | For each positive integer <math> m > 1 </math>, let <math>P(m)</math> denote the greatest prime factor of <math>m</math>. For how many positive integers <math>n</math> is it true that both <math> P(n) = \sqrt{n} </math> and <math> P(n+48) = \sqrt{n+48} </math>? |
<math> \mathrm{(A) \ } 0\qquad \mathrm{(B) \ } 1\qquad \mathrm{(C) \ } 3\qquad \mathrm{(D) \ } 4\qquad \mathrm{(E) \ } 5 </math> | <math> \mathrm{(A) \ } 0\qquad \mathrm{(B) \ } 1\qquad \mathrm{(C) \ } 3\qquad \mathrm{(D) \ } 4\qquad \mathrm{(E) \ } 5 </math> | ||
==Solution== | ==Solution== | ||
− | If <math> P(n) = \sqrt{n} </math>, then <math> n = p_{1}^{2} </math>, where <math> p_{1} </math> is a prime number. | + | If <math> P(n) = \sqrt{n} </math>, then <math> n = p_{1}^{2} </math>, where <math> p_{1} </math> is a [[prime number]]. |
If <math> P(n+48) = \sqrt{n+48} </math>, then <math> n+48 = p_{2}^{2} </math>, where <math> p_{2} </math> is a different prime number. | If <math> P(n+48) = \sqrt{n+48} </math>, then <math> n+48 = p_{2}^{2} </math>, where <math> p_{2} </math> is a different prime number. | ||
Line 21: | Line 21: | ||
Since <math> p_{1} > 0 </math>: <math> (p_{2}+p_{1}) > (p_{2}-p_{1}) </math>. | Since <math> p_{1} > 0 </math>: <math> (p_{2}+p_{1}) > (p_{2}-p_{1}) </math>. | ||
− | Looking at pairs of | + | Looking at pairs of [[factor]]s of <math>48</math>, we have several possibilities to solve for <math>p_{1}</math> and <math>p_{2}</math>: |
Line 71: | Line 71: | ||
The only solution <math> (p_{1} , p_{2}) </math> where both numbers are primes is <math>(11,13)</math>. | The only solution <math> (p_{1} , p_{2}) </math> where both numbers are primes is <math>(11,13)</math>. | ||
− | Therefore the number of positive | + | Therefore the number of [[positive integer]]s <math>n</math> that satisfy both statements is <math>1\Rightarrow \mathrm{(B)}</math> |
==See Also== | ==See Also== | ||
*[[2005 AMC 10A Problems]] | *[[2005 AMC 10A Problems]] | ||
+ | |||
+ | [[Category:Introductory Number Theory Problems]] | ||
*[[2005 AMC 10A Problems/Problem 23|Previous Problem]] | *[[2005 AMC 10A Problems/Problem 23|Previous Problem]] | ||
*[[2005 AMC 10A Problems/Problem 25|Next Problem]] | *[[2005 AMC 10A Problems/Problem 25|Next Problem]] |
Revision as of 17:15, 4 August 2006
Problem
For each positive integer , let denote the greatest prime factor of . For how many positive integers is it true that both and ?
Solution
If , then , where is a prime number.
If , then , where is a different prime number.
So:
Since : .
Looking at pairs of factors of , we have several possibilities to solve for and :
The only solution where both numbers are primes is .
Therefore the number of positive integers that satisfy both statements is