Difference between revisions of "Generating function"
m (Generating functions moved to Generating function: in keeping with general principle) |
|
(No difference)
|
Revision as of 11:35, 6 July 2007
The idea behind generating functions is to create a power series whose coefficients, , give the terms of a sequence which of interest. Therefore the power series (i.e. the generating function) is and the sequence is .
Simple Example
If we let , then we have .
This function can be described as the number of ways we can get heads when flipping different coins.
The reason to go to such lengths is that our above polynomial is equal to (which is clearly seen due to the Binomial Theorem). By using this equation, we can rapidly uncover identities such as (let ), also .
See also
- Combinatorics
- Polynomials
- Series
- generatingfunctionology a PDF version