Difference between revisions of "Symmetric sum"
(roman lettering seems appropriate for the "sym" subscript) |
Etmetalakret (talk | contribs) |
||
Line 15: | Line 15: | ||
{{stub}} | {{stub}} | ||
− | [[Category: | + | [[Category:Algebra]] |
[[Category:Definition]] | [[Category:Definition]] |
Revision as of 12:44, 14 July 2021
The symmetric sum of a function of variables is defined to be , where ranges over all permutations of .
More generally, a symmetric sum of variables is a sum that is unchanged by any permutation of its variables.
Any symmetric sum can be written as a polynomial of elementary symmetric sums.
A symmetric function of variables is a function that is unchanged by any permutation of its variables. The symmetric sum of a symmetric function therefore satisfies
Given variables and a symmetric function with , the notation is sometimes used to denote the sum of over all subsets of size in .
See also
This article is a stub. Help us out by expanding it.