Difference between revisions of "1983 AHSME Problems/Problem 30"
m |
Sevenoptimus (talk | contribs) (Added a copy of the problem statement) |
||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
+ | |||
+ | Distinct points <math>A</math> and <math>B</math> are on a semicircle with diameter <math>MN</math> and center <math>C</math>. | ||
+ | The point <math>P</math> is on <math>CN</math> and <math>\angle CAP = \angle CBP = 10^{\circ}</math>. If <math>\stackrel{\frown}{MA} = 40^{\circ}</math>, then <math>\stackrel{\frown}{BN}</math> equals | ||
+ | |||
+ | [[File:pdfresizer.com-pdf-convert-q30.png]] | ||
+ | |||
+ | <math>\textbf{(A)}\ 10^{\circ}\qquad | ||
+ | \textbf{(B)}\ 15^{\circ}\qquad | ||
+ | \textbf{(C)}\ 20^{\circ}\qquad | ||
+ | \textbf{(D)}\ 25^{\circ}\qquad | ||
+ | \textbf{(E)}\ 30^{\circ} </math> | ||
+ | |||
+ | ==Solution== | ||
+ | |||
Since <math>\angle CAP = \angle CBP = 10^\circ</math>, quadrilateral <math>ABPC</math> is cyclic. | Since <math>\angle CAP = \angle CBP = 10^\circ</math>, quadrilateral <math>ABPC</math> is cyclic. | ||