1983 AHSME Problems/Problem 30

Problem

Distinct points $A$ and $B$ are on a semicircle with diameter $MN$ and center $C$. The point $P$ is on $CN$ and $\angle CAP = \angle CBP = 10^{\circ}$. If $\stackrel{\frown}{MA} = 40^{\circ}$, then $\stackrel{\frown}{BN}$ equals

Pdfresizer.com-pdf-convert-q30.png

$\textbf{(A)}\ 10^{\circ}\qquad \textbf{(B)}\ 15^{\circ}\qquad \textbf{(C)}\ 20^{\circ}\qquad \textbf{(D)}\ 25^{\circ}\qquad \textbf{(E)}\ 30^{\circ}$

Solution

Since $\angle CAP = \angle CBP = 10^\circ$, quadrilateral $ABPC$ is cyclic (as shown below) by the converse of the theorem "angles inscribed in the same arc are equal".

[asy] import geometry; import graph;  unitsize(2 cm);  pair A, B, C, M, N, P;  M = (-1,0); N = (1,0); C = (0,0); A = dir(140); B = dir(20); P = extension(A, A + rotate(10)*(C - A), B, B + rotate(10)*(C - B));  draw(M--N); draw(arc(C,1,0,180)); draw(A--C--B); draw(A--P--B); draw(A--B); draw(circumcircle(A,B,C),dashed);  label("$A$", A, W); label("$B$", B, E); label("$C$", C, S); label("$M$", M, SW); label("$N$", N, SE); label("$P$", P, S); [/asy]

Since $\angle ACM = 40^\circ$, $\angle ACP = 140^\circ$, so, using the fact that opposite angles in a cyclic quadrilateral sum to $180^{\circ}$, we have $\angle ABP = 40^\circ$. Hence $\angle ABC = \angle ABP - \angle CBP = 40^ \circ - 10^\circ = 30^\circ$.

Since $CA = CB$, triangle $ABC$ is isosceles, with $\angle BAC = \angle ABC = 30^\circ$. Now, $\angle BAP = \angle BAC - \angle CAP = 30^\circ - 10^\circ = 20^\circ$. Finally, again using the fact that angles inscribed in the same arc are equal, we have $\angle BCP = \angle BAP = \boxed{\textbf{(C)}\ 20^{\circ}}$.

See Also

1983 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 29
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

MATH IS SOOOO FUN

Invalid username
Login to AoPS