Difference between revisions of "2019 AMC 12A Problems"
(I just realized that the square bullet points are just asterisks; filled in the rest of the problems; please correct any errors if I made any) |
|||
Line 6: | Line 6: | ||
<math>\textbf{(A) } 25 \qquad\textbf{(B) } 33 \qquad\textbf{(C) } 44\qquad\textbf{(D) } 66 \qquad\textbf{(E) } 78</math> | <math>\textbf{(A) } 25 \qquad\textbf{(B) } 33 \qquad\textbf{(C) } 44\qquad\textbf{(D) } 66 \qquad\textbf{(E) } 78</math> | ||
+ | |||
+ | [[2019 AMC 12A Problems/Problem 1|Solution]] | ||
==Problem 2== | ==Problem 2== | ||
Line 12: | Line 14: | ||
<math>\textbf{(A) } 50 \qquad \textbf{(B) } 66\frac{2}{3} \qquad \textbf{(C) } 150 \qquad \textbf{(D) } 200 \qquad \textbf{(E) } 450</math> | <math>\textbf{(A) } 50 \qquad \textbf{(B) } 66\frac{2}{3} \qquad \textbf{(C) } 150 \qquad \textbf{(D) } 200 \qquad \textbf{(E) } 450</math> | ||
+ | |||
+ | [[2019 AMC 12A Problems/Problem 2|Solution]] | ||
==Problem 3== | ==Problem 3== | ||
Line 18: | Line 22: | ||
<math>\textbf{(A) } 75 \qquad\textbf{(B) } 76 \qquad\textbf{(C) } 79 \qquad\textbf{(D) } 84 \qquad\textbf{(E) } 91</math> | <math>\textbf{(A) } 75 \qquad\textbf{(B) } 76 \qquad\textbf{(C) } 79 \qquad\textbf{(D) } 84 \qquad\textbf{(E) } 91</math> | ||
+ | |||
+ | [[2019 AMC 12A Problems/Problem 3|Solution]] | ||
==Problem 4== | ==Problem 4== | ||
Line 24: | Line 30: | ||
<math>\textbf{(A) } 9 \qquad\textbf{(B) } 25 \qquad\textbf{(C) } 45 \qquad\textbf{(D) } 90 \qquad\textbf{(E) } 120</math> | <math>\textbf{(A) } 9 \qquad\textbf{(B) } 25 \qquad\textbf{(C) } 45 \qquad\textbf{(D) } 90 \qquad\textbf{(E) } 120</math> | ||
+ | |||
+ | [[2019 AMC 12A Problems/Problem 4|Solution]] | ||
==Problem 5== | ==Problem 5== | ||
Line 30: | Line 38: | ||
<math>\textbf{(A) } 4 \qquad\textbf{(B) } 4\sqrt{2} \qquad\textbf{(C) } 6 \qquad\textbf{(D) } 8 \qquad\textbf{(E) } 6\sqrt{2}</math> | <math>\textbf{(A) } 4 \qquad\textbf{(B) } 4\sqrt{2} \qquad\textbf{(C) } 6 \qquad\textbf{(D) } 8 \qquad\textbf{(E) } 6\sqrt{2}</math> | ||
+ | |||
+ | [[2019 AMC 12A Problems/Problem 5|Solution]] | ||
==Problem 6== | ==Problem 6== | ||
Line 59: | Line 69: | ||
*some reflection across a line perpendicular to line <math>\ell</math> | *some reflection across a line perpendicular to line <math>\ell</math> | ||
<math>\textbf{(A) } 0 \qquad\textbf{(B) } 1 \qquad\textbf{(C) } 2 \qquad\textbf{(D) } 3 \qquad\textbf{(E) } 4</math> | <math>\textbf{(A) } 0 \qquad\textbf{(B) } 1 \qquad\textbf{(C) } 2 \qquad\textbf{(D) } 3 \qquad\textbf{(E) } 4</math> | ||
+ | |||
+ | [[2019 AMC 12A Problems/Problem 6|Solution]] | ||
==Problem 7== | ==Problem 7== | ||
Line 65: | Line 77: | ||
<math>\textbf{(A) } \mu < d < M \qquad\textbf{(B) } M < d < \mu \qquad\textbf{(C) } d = M =\mu \qquad\textbf{(D) } d < M < \mu \qquad\textbf{(E) } d < \mu < M</math> | <math>\textbf{(A) } \mu < d < M \qquad\textbf{(B) } M < d < \mu \qquad\textbf{(C) } d = M =\mu \qquad\textbf{(D) } d < M < \mu \qquad\textbf{(E) } d < \mu < M</math> | ||
+ | |||
+ | [[2019 AMC 12A Problems/Problem 7|Solution]] | ||
==Problem 8== | ==Problem 8== | ||
Line 71: | Line 85: | ||
<math>\textbf{(A) } 14 \qquad \textbf{(B) } 16 \qquad \textbf{(C) } 18 \qquad \textbf{(D) } 19 \qquad \textbf{(E) } 21</math> | <math>\textbf{(A) } 14 \qquad \textbf{(B) } 16 \qquad \textbf{(C) } 18 \qquad \textbf{(D) } 19 \qquad \textbf{(E) } 21</math> | ||
+ | |||
+ | [[2019 AMC 12A Problems/Problem 8|Solution]] | ||
==Problem 9== | ==Problem 9== | ||
Line 78: | Line 94: | ||
<math>\textbf{(A) } 2020 \qquad\textbf{(B) } 4039 \qquad\textbf{(C) } 6057 \qquad\textbf{(D) } 6061 \qquad\textbf{(E) } 8078</math> | <math>\textbf{(A) } 2020 \qquad\textbf{(B) } 4039 \qquad\textbf{(C) } 6057 \qquad\textbf{(D) } 6061 \qquad\textbf{(E) } 8078</math> | ||
+ | |||
+ | [[2019 AMC 12A Problems/Problem 9|Solution]] | ||
==Problem 10== | ==Problem 10== | ||
Line 86: | Line 104: | ||
<math>\textbf{(A) } 4 \pi \sqrt{3} \qquad\textbf{(B) } 7 \pi \qquad\textbf{(C) } \pi(3\sqrt{3} +2) \qquad\textbf{(D) } 10 \pi (\sqrt{3} - 1) \qquad\textbf{(E) } \pi(\sqrt{3} + 6)</math> | <math>\textbf{(A) } 4 \pi \sqrt{3} \qquad\textbf{(B) } 7 \pi \qquad\textbf{(C) } \pi(3\sqrt{3} +2) \qquad\textbf{(D) } 10 \pi (\sqrt{3} - 1) \qquad\textbf{(E) } \pi(\sqrt{3} + 6)</math> | ||
+ | |||
+ | [[2019 AMC 12A Problems/Problem 10|Solution]] | ||
==Problem 11== | ==Problem 11== | ||
Line 91: | Line 111: | ||
For some positive integer <math>k</math>, the repeating base-<math>k</math> representation of the (base-ten) fraction <math>\frac{7}{51}</math> is <math>0.\overline{23}_k = 0.232323..._k</math>. What is <math>k</math>? | For some positive integer <math>k</math>, the repeating base-<math>k</math> representation of the (base-ten) fraction <math>\frac{7}{51}</math> is <math>0.\overline{23}_k = 0.232323..._k</math>. What is <math>k</math>? | ||
+ | <math>\textbf{(A) } 13 \qquad\textbf{(B) } 14 \qquad\textbf{(C) } 15 \qquad\textbf{(D) } 16 \qquad\textbf{(E) } 17</math> | ||
− | + | [[2019 AMC 12A Problems/Problem 11|Solution]] | |
==Problem 12== | ==Problem 12== | ||
Line 99: | Line 120: | ||
<math>\textbf{(A) } \frac{25}{2} \qquad\textbf{(B) } 20 \qquad\textbf{(C) } \frac{45}{2} \qquad\textbf{(D) } 25 \qquad\textbf{(E) } 32</math> | <math>\textbf{(A) } \frac{25}{2} \qquad\textbf{(B) } 20 \qquad\textbf{(C) } \frac{45}{2} \qquad\textbf{(D) } 25 \qquad\textbf{(E) } 32</math> | ||
+ | |||
+ | [[2019 AMC 12A Problems/Problem 12|Solution]] | ||
==Problem 13== | ==Problem 13== | ||
Line 105: | Line 128: | ||
<math>\textbf{(A)}\ 144\qquad\textbf{(B)}\ 216\qquad\textbf{(C)}\ 256\qquad\textbf{(D)}\ 384\qquad\textbf{(E)}\ 432</math> | <math>\textbf{(A)}\ 144\qquad\textbf{(B)}\ 216\qquad\textbf{(C)}\ 256\qquad\textbf{(D)}\ 384\qquad\textbf{(E)}\ 432</math> | ||
+ | |||
+ | [[2019 AMC 12A Problems/Problem 13|Solution]] | ||
==Problem 14== | ==Problem 14== | ||
Line 112: | Line 137: | ||
<math>\textbf{(A) } 2 \qquad \textbf{(B) } \sqrt{6} \qquad \textbf{(C) } 2\sqrt{2} \qquad \textbf{(D) } 3 \qquad \textbf{(E) } \sqrt{10}</math> | <math>\textbf{(A) } 2 \qquad \textbf{(B) } \sqrt{6} \qquad \textbf{(C) } 2\sqrt{2} \qquad \textbf{(D) } 3 \qquad \textbf{(E) } \sqrt{10}</math> | ||
+ | |||
+ | [[2019 AMC 12A Problems/Problem 14|Solution]] | ||
==Problem 15== | ==Problem 15== | ||
Line 121: | Line 148: | ||
<math>\textbf{(A) } 10^{52} \qquad \textbf{(B) } 10^{100} \qquad \textbf{(C) } 10^{144} \qquad \textbf{(D) } 10^{164} \qquad \textbf{(E) } 10^{200} </math> | <math>\textbf{(A) } 10^{52} \qquad \textbf{(B) } 10^{100} \qquad \textbf{(C) } 10^{144} \qquad \textbf{(D) } 10^{164} \qquad \textbf{(E) } 10^{200} </math> | ||
+ | |||
+ | [[2019 AMC 12A Problems/Problem 15|Solution]] | ||
==Problem 16== | ==Problem 16== | ||
Line 127: | Line 156: | ||
<math>\textbf{(A) }1/21\qquad\textbf{(B) }1/14\qquad\textbf{(C) }5/63\qquad\textbf{(D) }2/21\qquad\textbf{(E) } 1/7</math> | <math>\textbf{(A) }1/21\qquad\textbf{(B) }1/14\qquad\textbf{(C) }5/63\qquad\textbf{(D) }2/21\qquad\textbf{(E) } 1/7</math> | ||
+ | |||
+ | [[2019 AMC 12A Problems/Problem 16|Solution]] | ||
==Problem 17== | ==Problem 17== | ||
Line 133: | Line 164: | ||
<math>\textbf{(A)} \; -6 \qquad \textbf{(B)} \; 0 \qquad \textbf{(C)} \; 6 \qquad \textbf{(D)} \; 10 \qquad \textbf{(E)} \; 26</math> | <math>\textbf{(A)} \; -6 \qquad \textbf{(B)} \; 0 \qquad \textbf{(C)} \; 6 \qquad \textbf{(D)} \; 10 \qquad \textbf{(E)} \; 26</math> | ||
+ | |||
+ | [[2019 AMC 12A Problems/Problem 17|Solution]] | ||
==Problem 18== | ==Problem 18== | ||
Line 145: | Line 178: | ||
\textbf{(E) }5\qquad | \textbf{(E) }5\qquad | ||
</math> | </math> | ||
+ | |||
+ | [[2019 AMC 12A Problems/Problem 18|Solution]] | ||
==Problem 19== | ==Problem 19== | ||
Line 153: | Line 188: | ||
<math>\textbf{(A) } 9 \qquad \textbf{(B) } 12 \qquad \textbf{(C) } 23 \qquad \textbf{(D) } 27 \qquad \textbf{(E) } 44</math> | <math>\textbf{(A) } 9 \qquad \textbf{(B) } 12 \qquad \textbf{(C) } 23 \qquad \textbf{(D) } 27 \qquad \textbf{(E) } 44</math> | ||
+ | |||
+ | [[2019 AMC 12A Problems/Problem 19|Solution]] | ||
==Problem 20== | ==Problem 20== | ||
Line 159: | Line 196: | ||
<math>\textbf{(A)} \frac{1}{3} \qquad \textbf{(B)} \frac{7}{16} \qquad \textbf{(C)} \frac{1}{2} \qquad \textbf{(D)} \frac{9}{16} \qquad \textbf{(E)} \frac{2}{3}</math> | <math>\textbf{(A)} \frac{1}{3} \qquad \textbf{(B)} \frac{7}{16} \qquad \textbf{(C)} \frac{1}{2} \qquad \textbf{(D)} \frac{9}{16} \qquad \textbf{(E)} \frac{2}{3}</math> | ||
+ | |||
+ | [[2019 AMC 12A Problems/Problem 20|Solution]] | ||
==Problem 21== | ==Problem 21== | ||
Line 165: | Line 204: | ||
<math>\textbf{(A) } 18 \qquad \textbf{(B) } 72-36\sqrt2 \qquad \textbf{(C) } 36 \qquad \textbf{(D) } 72 \qquad \textbf{(E) } 72+36\sqrt2</math> | <math>\textbf{(A) } 18 \qquad \textbf{(B) } 72-36\sqrt2 \qquad \textbf{(C) } 36 \qquad \textbf{(D) } 72 \qquad \textbf{(E) } 72+36\sqrt2</math> | ||
+ | |||
+ | [[2019 AMC 12A Problems/Problem 21|Solution]] | ||
==Problem 22== | ==Problem 22== | ||
Line 172: | Line 213: | ||
<math>\textbf{(A) } 42 \qquad \textbf{(B) }86 \qquad \textbf{(C) } 92 \qquad \textbf{(D) } 114 \qquad \textbf{(E) } 130</math> | <math>\textbf{(A) } 42 \qquad \textbf{(B) }86 \qquad \textbf{(C) } 92 \qquad \textbf{(D) } 114 \qquad \textbf{(E) } 130</math> | ||
+ | |||
+ | [[2019 AMC 12A Problems/Problem 22|Solution]] | ||
==Problem 23== | ==Problem 23== | ||
Line 178: | Line 221: | ||
<math>\textbf{(A) } 8 \qquad \textbf{(B) } 9 \qquad \textbf{(C) } 10 \qquad \textbf{(D) } 11 \qquad \textbf{(E) } 12</math> | <math>\textbf{(A) } 8 \qquad \textbf{(B) } 9 \qquad \textbf{(C) } 10 \qquad \textbf{(D) } 11 \qquad \textbf{(E) } 12</math> | ||
+ | |||
+ | [[2019 AMC 12A Problems/Problem 23|Solution]] | ||
==Problem 24== | ==Problem 24== | ||
Line 186: | Line 231: | ||
<math>\textbf{(A) } 31 \qquad \textbf{(B) } 32 \qquad \textbf{(C) } 33 \qquad \textbf{(D) } 34 \qquad \textbf{(E) } 35</math> | <math>\textbf{(A) } 31 \qquad \textbf{(B) } 32 \qquad \textbf{(C) } 33 \qquad \textbf{(D) } 34 \qquad \textbf{(E) } 35</math> | ||
+ | |||
+ | [[2019 AMC 12A Problems/Problem 24|Solution]] | ||
==Problem 25== | ==Problem 25== | ||
Line 193: | Line 240: | ||
<math>\textbf{(A) } 10 \qquad \textbf{(B) }11 \qquad \textbf{(C) } 13\qquad \textbf{(D) } 14 \qquad \textbf{(E) } 15</math> | <math>\textbf{(A) } 10 \qquad \textbf{(B) }11 \qquad \textbf{(C) } 13\qquad \textbf{(D) } 14 \qquad \textbf{(E) } 15</math> | ||
+ | |||
+ | [[2019 AMC 12A Problems/Problem 25|Solution]] | ||
==See also== | ==See also== | ||
{{AMC12 box|year=2019|ab=A|before=[[2018 AMC 12B Problems]]|after=[[2019 AMC 12B Problems]]}} | {{AMC12 box|year=2019|ab=A|before=[[2018 AMC 12B Problems]]|after=[[2019 AMC 12B Problems]]}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 16:31, 9 February 2019
2019 AMC 12A (Answer Key) Printable versions: • AoPS Resources • PDF | ||
Instructions
| ||
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 |
Contents
- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8
- 9 Problem 9
- 10 Problem 10
- 11 Problem 11
- 12 Problem 12
- 13 Problem 13
- 14 Problem 14
- 15 Problem 15
- 16 Problem 16
- 17 Problem 17
- 18 Problem 18
- 19 Problem 19
- 20 Problem 20
- 21 Problem 21
- 22 Problem 22
- 23 Problem 23
- 24 Problem 24
- 25 Problem 25
- 26 See also
Problem 1
The area of a pizza with radius is percent larger than the area of a pizza with radius inches. What is the integer closest to ?
Problem 2
Suppose is of . What percent of is ?
Problem 3
A box contains red balls, green balls, yellow balls, blue balls, white balls, and black balls. What is the minimum number of balls that must be drawn from the box without replacement to guarantee that at least balls of a single color will be drawn
Problem 4
What is the greatest number of consecutive integers whose sum is
Problem 5
Two lines with slopes and intersect at . What is the area of the triangle enclosed by these two lines and the line
Problem 6
The figure below shows line with a regular, infinite, recurring pattern of squares and line segments.
size(300); defaultpen(linewidth(0.8)); real r = 0.35; path P = (0,0)--(0,1)--(1,1)--(1,0), Q = (1,1)--(1+r,1+r); path Pp = (0,0)--(0,-1)--(1,-1)--(1,0), Qp = (-1,-1)--(-1-r,-1-r); for(int i=0;i <= 4;i=i+1) { draw(shift((4*i,0)) * P); draw(shift((4*i,0)) * Q); } for(int i=1;i <= 4;i=i+1) { draw(shift((4*i-2,0)) * Pp); draw(shift((4*i-1,0)) * Qp); } draw((-1,0)--(18.5,0),Arrows(TeXHead)); (Error making remote request. Unexpected URL sent back)
How many of the following four kinds of rigid motion transformations of the plane in which this figure is drawn, other than the identity transformation, will transform this figure into itself?
- some rotation around a point of line
- some translation in the direction parallel to line
- the reflection across line
- some reflection across a line perpendicular to line
Problem 7
Melanie computes the mean , the median , and the modes of the values that are the dates in the months of . Thus her data consist of , , . . . , , , , and . Let be the median of the modes. Which of the following statements is true?
Problem 8
For a set of four distinct lines in a plane, there are exactly distinct points that lie on two or more of the lines. What is the sum of all possible values of ?
Problem 9
A sequence of numbers is defined recursively by , , and for all Then can be written as , where and are relatively prime positive inegers. What is
Problem 10
The figure below shows circles of radius within a larger circle. All the intersections occur at points of tangency. What is the area of the region, shaded in the figure, inside the larger circle but outside all the circles of radius
Problem 11
For some positive integer , the repeating base- representation of the (base-ten) fraction is . What is ?
Problem 12
Positive real numbers and satisfy and . What is ?
Problem 13
How many ways are there to paint each of the integers either red, green, or blue so that each number has a different color from each of its proper divisors?
Problem 14
For a certain complex number , the polynomial has exactly 4 distinct roots. What is ?
Problem 15
Positive real numbers and have the property that
and all four terms on the left are positive integers, where log denotes the base 10 logarithm. What is ?
Problem 16
The numbers are randomly placed into the squares of a grid. Each square gets one number, and each of the numbers is used once. What is the probability that the sum of the numbers in each row and each column is odd?
Problem 17
Let denote the sum of the th powers of the roots of the polynomial . In particular, , , and . Let , , and be real numbers such that for , , What is ?
Problem 18
A sphere with center has radius . A triangle with sides of length and is situated in space so that each of its sides is tangent to the sphere. What is the distance between and the plane determined by the triangle?
Problem 19
In with integer side lengths, What is the least possible perimeter for ?
Problem 20
Real numbers between 0 and 1, inclusive, are chosen in the following manner. A fair coin is flipped. If it lands heads, then it is flipped again and the chosen number is 0 if the second flip is heads and 1 if the second flip is tails. On the other hand, if the first coin flip is tails, then the number is chosen uniformly at random from the closed interval . Two random numbers and are chosen independently in this manner. What is the probability that ?
Problem 21
Let What is
Problem 22
Circles and , both centered at , have radii and , respectively. Equilateral triangle , whose interior lies in the interior of but in the exterior of , has vertex on , and the line containing side is tangent to . Segments and intersect at , and . Then can be written in the form for positive integers , , , with . What is ?
Problem 23
Define binary operations and by for all real numbers and for which these expressions are defined. The sequence is defined recursively by and for all integers . To the nearest integer, what is ?
Problem 24
For how many integers between and , inclusive, is an integer? (Recall that .)
Problem 25
Let be a triangle whose angle measures are exactly , , and . For each positive integer define to be the foot of the altitude from to line . Likewise, define to be the foot of the altitude from to line , and to be the foot of the altitude from to line . What is the least positive integer for which is obtuse?
See also
2019 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by 2018 AMC 12B Problems |
Followed by 2019 AMC 12B Problems |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.