Difference between revisions of "2019 AMC 12A Problems/Problem 2"

(Solution)
(Solution)
Line 5: Line 5:
 
<math>\textbf{(A) } 50 \qquad \textbf{(B) } 66\frac{2}{3} \qquad \textbf{(C) } 150 \qquad \textbf{(D) } 200 \qquad \textbf{(E) } 450</math>
 
<math>\textbf{(A) } 50 \qquad \textbf{(B) } 66\frac{2}{3} \qquad \textbf{(C) } 150 \qquad \textbf{(D) } 200 \qquad \textbf{(E) } 450</math>
  
==Solution==
+
==Solution 1==
 
Since <math>a=1.5b</math>, that means <math>b=a/1.5</math>. We  multiply by 3 to get a <math>3b</math> term, to yield <math>3b=2a</math>.  
 
Since <math>a=1.5b</math>, that means <math>b=a/1.5</math>. We  multiply by 3 to get a <math>3b</math> term, to yield <math>3b=2a</math>.  
  
Line 11: Line 11:
  
 
-- eric2020
 
-- eric2020
 +
 +
==Solution 2==
 +
WLOG, let <math>b=100</math>. Then, we have <math>a=150</math> and <math>3b=300</math>.  Thus, <math>\frac{3b}{a}=\frac{300}{150}=2</math> so <math>3b</math> is <math>200\%</math> or <math>a</math> so the answer is <math>\boxed{D}.</math>
  
 
==See Also==
 
==See Also==

Revision as of 09:09, 10 February 2019

Problem

Suppose $a$ is $150\%$ of $b$. What percent of $a$ is $3b$?

$\textbf{(A) } 50 \qquad \textbf{(B) } 66\frac{2}{3} \qquad \textbf{(C) } 150 \qquad \textbf{(D) } 200 \qquad \textbf{(E) } 450$

Solution 1

Since $a=1.5b$, that means $b=a/1.5$. We multiply by 3 to get a $3b$ term, to yield $3b=2a$.

$2a$ is $\boxed{200\%}$ of $a$.

-- eric2020

Solution 2

WLOG, let $b=100$. Then, we have $a=150$ and $3b=300$. Thus, $\frac{3b}{a}=\frac{300}{150}=2$ so $3b$ is $200\%$ or $a$ so the answer is $\boxed{D}.$

See Also

2019 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png