Difference between revisions of "2019 AMC 10B Problems/Problem 6"

(Solution)
(Solution)
Line 7: Line 7:
 
<cmath>n![n+1 + (n+2)(n+1)] = 440 \cdot n!</cmath>
 
<cmath>n![n+1 + (n+2)(n+1)] = 440 \cdot n!</cmath>
 
<cmath>n + 1 + n^2 + 3n + 2 = 440</cmath>
 
<cmath>n + 1 + n^2 + 3n + 2 = 440</cmath>
<cmath>n^2 + 4n - 437</cmath>
+
<cmath>n^2 + 4n - 437 = 0</cmath>
  
 
<math>\frac{-4\pm \sqrt{16+437\cdot4}}{2} \Rightarrow \frac{-4\pm 42}{2}\Rightarrow \frac{38}{2} \Rightarrow 1 + 9 = \boxed{C) 10}</math>
 
<math>\frac{-4\pm \sqrt{16+437\cdot4}}{2} \Rightarrow \frac{-4\pm 42}{2}\Rightarrow \frac{38}{2} \Rightarrow 1 + 9 = \boxed{C) 10}</math>
  
 
iron
 
iron

Revision as of 13:43, 14 February 2019

There is a real $n$ such that $(n+1)! + (n+2)! = n! \cdot 440$. What is the sum of the digits of $n$?

$\textbf{(A) }3\qquad\textbf{(B) }8\qquad\textbf{(C) }10\qquad\textbf{(D) }11\qquad\textbf{(E) }12$

Solution

\[(n+1)n! + (n+2)(n+1)n! = 440 \cdot n!\] \[n![n+1 + (n+2)(n+1)] = 440 \cdot n!\] \[n + 1 + n^2 + 3n + 2 = 440\] \[n^2 + 4n - 437 = 0\]

$\frac{-4\pm \sqrt{16+437\cdot4}}{2} \Rightarrow \frac{-4\pm 42}{2}\Rightarrow \frac{38}{2} \Rightarrow 1 + 9 = \boxed{C) 10}$

iron