Difference between revisions of "2019 AMC 12A Problems/Problem 1"
Sevenoptimus (talk | contribs) m (Fixed spacing) |
|||
Line 8: | Line 8: | ||
The area of the larger pizza is <math>16\pi</math>, while the area of the smaller pizza is <math>9\pi</math>. Therefore, the larger pizza is <math>\frac{7\pi}{9\pi} \cdot 100\%</math> bigger than the smaller pizza. <math>\frac{7\pi}{9\pi} \cdot 100\% = 77.777....</math>, which is closest to <math>\boxed{\textbf{(E) }78}</math>. | The area of the larger pizza is <math>16\pi</math>, while the area of the smaller pizza is <math>9\pi</math>. Therefore, the larger pizza is <math>\frac{7\pi}{9\pi} \cdot 100\%</math> bigger than the smaller pizza. <math>\frac{7\pi}{9\pi} \cdot 100\% = 77.777....</math>, which is closest to <math>\boxed{\textbf{(E) }78}</math>. | ||
− | |||
==See Also== | ==See Also== |
Revision as of 20:46, 17 February 2019
Problem
The area of a pizza with radius is percent larger than the area of a pizza with radius inches. What is the integer closest to ?
Solution
The area of the larger pizza is , while the area of the smaller pizza is . Therefore, the larger pizza is bigger than the smaller pizza. , which is closest to .
See Also
2019 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by First Problem |
Followed by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.