Difference between revisions of "2015 AMC 10B Problems/Problem 19"
Firebolt360 (talk | contribs) (→Solution) |
|||
Line 4: | Line 4: | ||
<math>\textbf{(A) }12+9\sqrt{3}\qquad\textbf{(B) }18+6\sqrt{3}\qquad\textbf{(C) }12+12\sqrt{2}\qquad\textbf{(D) }30\qquad\textbf{(E) }32</math> | <math>\textbf{(A) }12+9\sqrt{3}\qquad\textbf{(B) }18+6\sqrt{3}\qquad\textbf{(C) }12+12\sqrt{2}\qquad\textbf{(D) }30\qquad\textbf{(E) }32</math> | ||
− | ==Solution== | + | ==Solution 1== |
The center of the circle lies on the perpendicular bisectors of both chords <math>ZW</math> and <math>YX</math>. Therefore we know the center of the circle must also be the midpoint of the hypotenuse. Let this point be <math>O</math>. Draw perpendiculars to <math>ZW</math> and <math>YX</math> from <math>O</math>, and connect <math>OZ</math> and <math>OY</math>. <math>OY^2=6^2+12^2=180</math>. Let <math>AC=a</math> and <math>BC=b</math>. Then <math>\left(\dfrac{a}{2}\right)^2+\left(a+\dfrac{b}{2}\right)^2=OZ^2=OY^2=180</math>. Simplifying this gives <math>\dfrac{a^2}{4}+\dfrac{b^2}{4}+a^2+ab=180</math>. But by Pythagorean Theorem on <math>\triangle ABC</math>, we know <math>a^2+b^2=144</math>, because <math>AB=12</math>. Thus <math>\dfrac{a^2}{4}+\dfrac{b^2}{4}=\dfrac{144}{4}=36</math>. So our equation simplifies further to <math>a^2+ab=144</math>. However <math>a^2+b^2=144</math>, so <math>a^2+ab=a^2+b^2</math>, which means <math>ab=b^2</math>, or <math>a=b</math>. <i>Aha</i>! This means <math>\triangle ABC</math> is just an isosceles right triangle, so <math>AC=BC=\dfrac{12}{\sqrt{2}}=6\sqrt{2}</math>, and thus the perimeter is <math>\boxed{\textbf{(C)}\ 12+12\sqrt{2}}</math>. | The center of the circle lies on the perpendicular bisectors of both chords <math>ZW</math> and <math>YX</math>. Therefore we know the center of the circle must also be the midpoint of the hypotenuse. Let this point be <math>O</math>. Draw perpendiculars to <math>ZW</math> and <math>YX</math> from <math>O</math>, and connect <math>OZ</math> and <math>OY</math>. <math>OY^2=6^2+12^2=180</math>. Let <math>AC=a</math> and <math>BC=b</math>. Then <math>\left(\dfrac{a}{2}\right)^2+\left(a+\dfrac{b}{2}\right)^2=OZ^2=OY^2=180</math>. Simplifying this gives <math>\dfrac{a^2}{4}+\dfrac{b^2}{4}+a^2+ab=180</math>. But by Pythagorean Theorem on <math>\triangle ABC</math>, we know <math>a^2+b^2=144</math>, because <math>AB=12</math>. Thus <math>\dfrac{a^2}{4}+\dfrac{b^2}{4}=\dfrac{144}{4}=36</math>. So our equation simplifies further to <math>a^2+ab=144</math>. However <math>a^2+b^2=144</math>, so <math>a^2+ab=a^2+b^2</math>, which means <math>ab=b^2</math>, or <math>a=b</math>. <i>Aha</i>! This means <math>\triangle ABC</math> is just an isosceles right triangle, so <math>AC=BC=\dfrac{12}{\sqrt{2}}=6\sqrt{2}</math>, and thus the perimeter is <math>\boxed{\textbf{(C)}\ 12+12\sqrt{2}}</math>. | ||
<asy> | <asy> | ||
Line 53: | Line 53: | ||
</asy> | </asy> | ||
+ | ==Solution 2== | ||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2015|ab=B|num-b=18|num-a=20}} | {{AMC10 box|year=2015|ab=B|num-b=18|num-a=20}} |
Revision as of 15:55, 4 May 2019
Contents
Problem
In , and . Squares and are constructed outside of the triangle. The points , and lie on a circle. What is the perimeter of the triangle?
Solution 1
The center of the circle lies on the perpendicular bisectors of both chords and . Therefore we know the center of the circle must also be the midpoint of the hypotenuse. Let this point be . Draw perpendiculars to and from , and connect and . . Let and . Then . Simplifying this gives . But by Pythagorean Theorem on , we know , because . Thus . So our equation simplifies further to . However , so , which means , or . Aha! This means is just an isosceles right triangle, so , and thus the perimeter is .
Solution 2
See Also
2015 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.