Difference between revisions of "2011 AMC 10A Problems/Problem 20"
m (→Solution) |
(→Problem 20) |
||
Line 5: | Line 5: | ||
[[Category: Introductory Geometry Problems]] | [[Category: Introductory Geometry Problems]] | ||
− | Solution | + | ==Solution== |
Fix a point <math>A</math> from which we draw a clockwise chord. In order for the clockwise chord from another point <math>B</math> to intersect that of point <math>A</math>, <math>A</math> and <math>B</math> must be no more than <math>r</math> units apart. By drawing the circle, we quickly see that <math>B</math> can be on <math>\frac{120}{360}=\boxed{\frac{1}{3} \ \textbf{(D)}}</math> of the perimeter of the circle. (Imagine a regular hexagon inscribed in the circle) | Fix a point <math>A</math> from which we draw a clockwise chord. In order for the clockwise chord from another point <math>B</math> to intersect that of point <math>A</math>, <math>A</math> and <math>B</math> must be no more than <math>r</math> units apart. By drawing the circle, we quickly see that <math>B</math> can be on <math>\frac{120}{360}=\boxed{\frac{1}{3} \ \textbf{(D)}}</math> of the perimeter of the circle. (Imagine a regular hexagon inscribed in the circle) |
Revision as of 15:12, 21 August 2019
Problem 20
Two points on the circumference of a circle of radius are selected independently and at random. From each point a chord of length is drawn in a clockwise direction. What is the probability that the two chords intersect?
Solution
Fix a point from which we draw a clockwise chord. In order for the clockwise chord from another point to intersect that of point , and must be no more than units apart. By drawing the circle, we quickly see that can be on of the perimeter of the circle. (Imagine a regular hexagon inscribed in the circle)
See Also
2011 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.