Difference between revisions of "2006 AIME II Problems/Problem 5"
m (→Solution 2) |
Frostblaze (talk | contribs) m (→Solution 1) |
||
Line 21: | Line 21: | ||
0 &= 192 \left(A(6)\right)^2 - 64 \left(A(6)\right) + 5\\ | 0 &= 192 \left(A(6)\right)^2 - 64 \left(A(6)\right) + 5\\ | ||
A(6)&=\frac{64\pm\sqrt{64^2 - 4 \cdot 5 \cdot 192}}{2\cdot192} =\frac{5}{24}, \frac{1}{8}\end{align*}</cmath> | A(6)&=\frac{64\pm\sqrt{64^2 - 4 \cdot 5 \cdot 192}}{2\cdot192} =\frac{5}{24}, \frac{1}{8}\end{align*}</cmath> | ||
− | We know that <math>A(6)>\frac{1}{6}</math>, so it can't be <math>\frac{1}{8}</math>. Therefore, the probability is <math>\frac{5}{24}</math> and the answer is <math>5+24=\boxed{ | + | We know that <math>A(6)>\frac{1}{6}</math>, so it can't be <math>\frac{1}{8}</math>. Therefore, the probability is <math>\frac{5}{24}</math> and the answer is <math>5+24=\boxed{29}</math>. |
Note also that the initial assumption that face <math>F</math> was the face labelled 6 is unnecessary -- we would have carried out exactly the same steps and found exactly the same probability no matter which face it was. We could have labelled <math>A(6)</math> as <math>p</math>, for example, and replaced the others with variables too, but the notation would have been harder to follow. | Note also that the initial assumption that face <math>F</math> was the face labelled 6 is unnecessary -- we would have carried out exactly the same steps and found exactly the same probability no matter which face it was. We could have labelled <math>A(6)</math> as <math>p</math>, for example, and replaced the others with variables too, but the notation would have been harder to follow. |
Revision as of 21:23, 3 October 2019
Contents
Problem
When rolling a certain unfair six-sided die with faces numbered 1, 2, 3, 4, 5, and 6, the probability of obtaining face is greater than , the probability of obtaining the face opposite is less than , the probability of obtaining any one of the other four faces is , and the sum of the numbers on opposite faces is 7. When two such dice are rolled, the probability of obtaining a sum of 7 is . Given that the probability of obtaining face is where and are relatively prime positive integers, find
Solution 1
Without loss of generality, assume that face has a 6, so the opposite face has a 1. Let be the probability of rolling a number on one die and let be the probability of rolling a number on the other die. 7 can be obtained by rolling a 2 and 5, 5 and 2, 3 and 4, or 4 and 3. Each has a probability of , totaling . Subtracting all these probabilities from leaves chance of getting a 1 on die and a 6 on die or a 6 on die and a 1 on die :
Since the two dice are identical, and so
Also, we know that and that the total probability must be , so:
Combining the equations:
We know that , so it can't be . Therefore, the probability is and the answer is .
Note also that the initial assumption that face was the face labelled 6 is unnecessary -- we would have carried out exactly the same steps and found exactly the same probability no matter which face it was. We could have labelled as , for example, and replaced the others with variables too, but the notation would have been harder to follow.
Solution 2
We have that the cube probabilities to land on its faces are , , , , , we also know that the sum could be 7 only when the faces in each of the two tosses are opposite hence the probability to get a 7 is: multiplying by 288 we get: dividing by 16 and rearranging we get: so the probability F which is greater than is equal
See also
2006 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.