Difference between revisions of "2019 AMC 8 Problems/Problem 25"

(See Also)
(Solution 2)
Line 6: Line 6:
  
 
==Solution 2==
 
==Solution 2==
Let's say you assume that Alice has 2 apples. There are 19 ways to split the rest of the apples with Becky and Chris. If Alice has 3 apples, there are 18 ways to split the rest of the apples with Becky and Chris. If Alice has 4 apples, there are 17 ways to split the rest. So the total number of ways to split 24 apples between the three friends is equal to 19+18+17...……+1=20(19/2)=<math>\boxed{\textbf{(C)}\ 190}</math>
+
Let's say you assume that Alice has 2 apples. There are 19 ways to split the rest of the apples with Becky and Chris. If Alice has 3 apples, there are 18 ways to split the rest of the apples with Becky and Chris. If Alice has 4 apples, there are 17 ways to split the rest. So the total number of ways to split 24 apples between the three friends is equal to 19+18+17...……+1=20(19/2)=<math>\boxed{\textbf{(C)}\ 190}</math>~heeeeeeheeeeeee

Revision as of 12:19, 20 November 2019

Problem 25

Alice has $24$ apples. In how many ways can she share them with Becky and Chris so that each of the people has at least $2$ apples?

Solution 1

Using Stars and bars, and removing $6$ apples so each person can have $2$, we get the total number of ways, which is ${20 \choose 2}$, which is equal to $\boxed{\textbf{(C) }190}$. ~~SmileKat32

Solution 2

Let's say you assume that Alice has 2 apples. There are 19 ways to split the rest of the apples with Becky and Chris. If Alice has 3 apples, there are 18 ways to split the rest of the apples with Becky and Chris. If Alice has 4 apples, there are 17 ways to split the rest. So the total number of ways to split 24 apples between the three friends is equal to 19+18+17...……+1=20(19/2)=$\boxed{\textbf{(C)}\ 190}$~heeeeeeheeeeeee