Difference between revisions of "2012 AMC 10B Problems/Problem 19"

(Solution)
Line 6: Line 6:
  
 
==Solution==
 
==Solution==
 +
<asy>
 +
unitlength(4);
 +
pair B=(0,0)
 +
pair A=(0,6)
 +
pair C=(30,0);
 +
pair D=(30,6);
 +
dot(A);
 +
dot(B):
 +
dot(C);
 +
dot(D);
 +
</asy>
  
 
Note that the area of <math>BFDG</math> equals the area of <math>ABCD-\triangle AGB-\triangle DCF</math>.  
 
Note that the area of <math>BFDG</math> equals the area of <math>ABCD-\triangle AGB-\triangle DCF</math>.  

Revision as of 13:46, 31 December 2019

Problem

In rectangle $ABCD$, $AB=6$, $AD=30$, and $G$ is the midpoint of $\overline{AD}$. Segment $AB$ is extended 2 units beyond $B$ to point $E$, and $F$ is the intersection of $\overline{ED}$ and $\overline{BC}$. What is the area of $BFDG$?

$\textbf{(A)}\ \frac{133}{2}\qquad\textbf{(B)}\ 67\qquad\textbf{(C)}\ \frac{135}{2}\qquad\textbf{(D)}\ 68\qquad\textbf{(E)}\ \frac{137}{2}$

Solution

unitlength(4);
pair B=(0,0)
pair A=(0,6)
pair C=(30,0);
pair D=(30,6);
dot(A);
dot(B):
dot(C);
dot(D);
 (Error making remote request. Unknown error_msg)

Note that the area of $BFDG$ equals the area of $ABCD-\triangle AGB-\triangle DCF$. Since $AG=\frac{AD}{2}=15,$ $\triangle AGB=\frac{15\times 6}{2}=45$. Now, $\triangle AED\sim \triangle BEF$, so $\frac{AE}{BE}=4=\frac{AD}{BF}=\frac{30}{BF}\implies BF=7.5$ and $FC=22.5,$ so $\triangle DCF=\frac{22.5\times6}{2}=\frac{135}{2}.$

Therefore, \begin{align*}BFDG&=ABCD-\triangle AGB-\triangle DCF \\ &=180-45-\frac{135}{2} \\ &=\boxed{\frac{135}{2}}\end{align*} hence our answer is $\fbox{C}$

See Also

2012 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png