Difference between revisions of "2006 Cyprus Seniors Provincial/2nd grade/Problem 1"
(link to problem 2) |
(→Solution) |
||
Line 8: | Line 8: | ||
== Solution == | == Solution == | ||
− | i)<math>(\alpha + \beta + \gamma)^2 = 0</math> | + | i) <math>(\alpha + \beta + \gamma)^2 = 0</math> |
<math>\alpha^2 + \beta^2 - \gamma^2 +2\gamma^2 -2\alpha\beta -2\beta\gamma -2\alpha\gamma = 0</math> | <math>\alpha^2 + \beta^2 - \gamma^2 +2\gamma^2 -2\alpha\beta -2\beta\gamma -2\alpha\gamma = 0</math> | ||
Line 16: | Line 16: | ||
<math>\alpha^2 + \beta^2 - \gamma^2 = -2(\beta + \gamma)(\alpha + \gamma) </math> | <math>\alpha^2 + \beta^2 - \gamma^2 = -2(\beta + \gamma)(\alpha + \gamma) </math> | ||
− | ii)<math>2(\alpha + \beta + \gamma) = 0</math> | + | ii) <math>2(\alpha + \beta + \gamma) = 0</math> |
<math>(\alpha + \beta) + (\alpha + \gamma) + (\beta + \gamma)= 0</math> | <math>(\alpha + \beta) + (\alpha + \gamma) + (\beta + \gamma)= 0</math> |
Revision as of 09:14, 11 November 2006
Problem
If with , prove that
i)
ii)
Solution
i)
ii)
Form part i)