Difference between revisions of "2006 Cyprus Seniors Provincial/2nd grade/Problem 2"
(Problem 2) |
m (let) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | + | Let <math>\Alpha, \Beta, \Gamma</math> be consecutive points on a straight line <math>(\epsilon)</math>. We construct equilateral triangles <math>\Alpha\Beta\Delta</math> and <math>\Beta\Gamma\Epsilon</math> to the same side of <math>(\epsilon)</math>. | |
a) Prove that <math>\angle\Alpha\Epsilon\Beta = \angle\Delta\Gamma\Beta</math> | a) Prove that <math>\angle\Alpha\Epsilon\Beta = \angle\Delta\Gamma\Beta</math> |
Revision as of 09:33, 11 November 2006
Problem
Let $\Alpha, \Beta, \Gamma$ (Error compiling LaTeX. Unknown error_msg) be consecutive points on a straight line . We construct equilateral triangles $\Alpha\Beta\Delta$ (Error compiling LaTeX. Unknown error_msg) and $\Beta\Gamma\Epsilon$ (Error compiling LaTeX. Unknown error_msg) to the same side of .
a) Prove that $\angle\Alpha\Epsilon\Beta = \angle\Delta\Gamma\Beta$ (Error compiling LaTeX. Unknown error_msg)
b) If is the distance of form and is the distance of form $\Alpha\Gamma$ (Error compiling LaTeX. Unknown error_msg) prove that
$\frac{x_{1}}{x_{2}} = \frac{Area(\Alpha\Gamma\Delta)}{Area(\Alpha\Gamma\Epsilon)} = \frac{\Alpha\Beta}{\Beta\Gamma}$ (Error compiling LaTeX. Unknown error_msg)