Difference between revisions of "2006 Cyprus Seniors Provincial/2nd grade/Problem 1"
(→Solution) |
(.) |
||
Line 4: | Line 4: | ||
i) <math>\alpha^2 + \beta^2 - \gamma^2 = -2(\beta + \gamma)(\alpha + \gamma) </math> | i) <math>\alpha^2 + \beta^2 - \gamma^2 = -2(\beta + \gamma)(\alpha + \gamma) </math> | ||
− | ii) <math>\frac{1}{\beta^2 + \gamma^2 - \alpha^2} + \frac{1}{\gamma^2 + \alpha^2 - \beta^2} + \frac{1}{\alpha^2 + \beta^2 - \gamma^2} = 0</math> | + | ii) <math>\frac{1}{\beta^2 + \gamma^2 - \alpha^2} + \frac{1}{\gamma^2 + \alpha^2 - \beta^2} + \frac{1}{\alpha^2 + \beta^2 - \gamma^2} = 0</math>. |
== Solution == | == Solution == |
Revision as of 09:54, 11 November 2006
Problem
If with , prove that
i)
ii) .
Solution
i)
ii)
Form part i)