Difference between revisions of "2003 AMC 10B Problems/Problem 16"

m (Solution 2)
m (changed headers)
Line 5: Line 5:
 
<math>\textbf{(A) } 4 \qquad\textbf{(B) } 5 \qquad\textbf{(C) } 6 \qquad\textbf{(D) } 7 \qquad\textbf{(E) } 8</math>
 
<math>\textbf{(A) } 4 \qquad\textbf{(B) } 5 \qquad\textbf{(C) } 6 \qquad\textbf{(D) } 7 \qquad\textbf{(E) } 8</math>
  
==Solution 1==
+
==Solution==
 +
===Solution 1===
  
 
Let <math>m</math> be the number of main courses the restaurant serves, so <math>2m</math> is the number of appetizers. Then the number of dinner combinations is <math>2m\times m\times3=6m^2</math>. Since the customer wants to eat a different dinner in all <math>365</math> days of <math>2003</math>, we must have
 
Let <math>m</math> be the number of main courses the restaurant serves, so <math>2m</math> is the number of appetizers. Then the number of dinner combinations is <math>2m\times m\times3=6m^2</math>. Since the customer wants to eat a different dinner in all <math>365</math> days of <math>2003</math>, we must have
Line 16: Line 17:
  
  
==Solution 2==
+
===Solution 2===
  
 
Let <math>m</math> denote the number of main courses needed to meet the requirement. Then the number of dinners available is <math>3\cdot m \cdot 2m = 6m^2</math>. Thus <math>m^2</math> must be at least <math>365/6 \approx 61</math>. Since <math>7^2 = 49<61<64 = 8^2</math>, <math>\boxed{8}</math> main courses is enough, but 7 is not. The smallest integer value that satisfies this is <math>\boxed{\textbf{(E)}\ 8}</math>.
 
Let <math>m</math> denote the number of main courses needed to meet the requirement. Then the number of dinners available is <math>3\cdot m \cdot 2m = 6m^2</math>. Thus <math>m^2</math> must be at least <math>365/6 \approx 61</math>. Since <math>7^2 = 49<61<64 = 8^2</math>, <math>\boxed{8}</math> main courses is enough, but 7 is not. The smallest integer value that satisfies this is <math>\boxed{\textbf{(E)}\ 8}</math>.

Revision as of 19:10, 1 February 2020

Problem

A restaurant offers three desserts, and exactly twice as many appetizers as main courses. A dinner consists of an appetizer, a main course, and a dessert. What is the least number of main courses that a restaurant should offer so that a customer could have a different dinner each night in the year $2003$?

$\textbf{(A) } 4 \qquad\textbf{(B) } 5 \qquad\textbf{(C) } 6 \qquad\textbf{(D) } 7 \qquad\textbf{(E) } 8$

Solution

Solution 1

Let $m$ be the number of main courses the restaurant serves, so $2m$ is the number of appetizers. Then the number of dinner combinations is $2m\times m\times3=6m^2$. Since the customer wants to eat a different dinner in all $365$ days of $2003$, we must have

\begin{align*} 6m^2 &\geq 365\\ m^2 &\geq 60.83\ldots.\end{align*}

The smallest integer value that satisfies this is $\boxed{\textbf{(E)}\ 8}$.


Solution 2

Let $m$ denote the number of main courses needed to meet the requirement. Then the number of dinners available is $3\cdot m \cdot 2m = 6m^2$. Thus $m^2$ must be at least $365/6 \approx 61$. Since $7^2 = 49<61<64 = 8^2$, $\boxed{8}$ main courses is enough, but 7 is not. The smallest integer value that satisfies this is $\boxed{\textbf{(E)}\ 8}$.

See Also

2003 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png