Difference between revisions of "2015 AMC 10B Problems/Problem 25"
m (→Simplification of Solution) |
m (→Simplification of Solution) |
||
Line 44: | Line 44: | ||
Notice <math>immediately</math> that <math>b, c > q</math> This is our key step. | Notice <math>immediately</math> that <math>b, c > q</math> This is our key step. | ||
− | Then we can say <math>b=q+d</math>, <math>c=q+e</math>. If we clear the fraction about b and c (do the math), our immediate result is that <math>de = q^2</math>. Realize also that <math>d | + | Then we can say <math>b=q+d</math>, <math>c=q+e</math>. If we clear the fraction about b and c (do the math), our immediate result is that <math>de = q^2</math>. Realize also that <math>d \leq e</math>. |
Now go through cases for <math>a</math> and you end up with the same result. However, now you don't have to guess solutions. For example, when <math>a=3</math>, then <math>de = 36</math> and <math>d=1, 2, 3, 4, 6</math>. | Now go through cases for <math>a</math> and you end up with the same result. However, now you don't have to guess solutions. For example, when <math>a=3</math>, then <math>de = 36</math> and <math>d=1, 2, 3, 4, 6</math>. | ||
− | - minor edit by Williamgolly | + | - minor edit by Williamgolly, minor edit by Tiblis |
==See Also== | ==See Also== |
Revision as of 22:22, 3 February 2020
Problem
A rectangular box measures , where , , and are integers and . The volume and the surface area of the box are numerically equal. How many ordered triples are possible?
Solution
The surface area is , the volume is , so .
Divide both sides by , we have:
First consider the bound of the variable . Since we have , or .
Also note that , we have . Thus, , so .
So we have or .
Before the casework, let's consider the possible range for if .
From , we have . From , we have . Thus
When , , so . The solutions we find are , for a total of solutions.
When , , so . The solutions we find are , for a total of solutions.
When , , so . The only solution in this case is .
When , is forced to be , and thus .
Thus, our answer is
Simplification of Solution
The surface area is , the volume is , so .
Divide both sides by , we have: First consider the bound of the variable . Since we have , or .
Also note that , we have . Thus, , so .
So we have or .
We can say , where .
Notice that This is our key step. Then we can say , . If we clear the fraction about b and c (do the math), our immediate result is that . Realize also that .
Now go through cases for and you end up with the same result. However, now you don't have to guess solutions. For example, when , then and .
- minor edit by Williamgolly, minor edit by Tiblis
See Also
2015 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.