Difference between revisions of "2020 AMC 10B Problems/Problem 24"

(Created page with "==Problem== How many positive integers <math>n</math> satisfy<cmath>\dfrac{n+1000}{70} = \lfloor \sqrt{n} \rfloor?</cmath>(Recall that <math>\lfloor x\rfloor</math> is the gr...")
 
m (See Also)
Line 11: Line 11:
 
==See Also==  
 
==See Also==  
  
{{AMC10 box|year=2020|ab=B|before=23|num-a=25}}
+
{{AMC10 box|year=2020|ab=B|num-b=23|num-a=25}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 16:32, 7 February 2020

Problem

How many positive integers $n$ satisfy\[\dfrac{n+1000}{70} = \lfloor \sqrt{n} \rfloor?\](Recall that $\lfloor x\rfloor$ is the greatest integer not exceeding $x$.)

$\textbf{(A) } 2 \qquad\textbf{(B) } 4 \qquad\textbf{(C) } 6 \qquad\textbf{(D) } 30 \qquad\textbf{(E) } 32$

Solution

Solution

See Also

2020 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png