Difference between revisions of "1993 AHSME Problems/Problem 14"
(→Solution) |
(→Solution) |
||
Line 20: | Line 20: | ||
draw((-1,0)--(-1,sqrt(2))); | draw((-1,0)--(-1,sqrt(2))); | ||
draw((1,0)--(1,sqrt(2))); | draw((1,0)--(1,sqrt(2))); | ||
+ | MP("F",(-1,sqrt(2)),N);MP("G",(1,sqrt(2)),N); | ||
MP("A",(-1,0),SW);MP("B",(1,0),SE);MP("C",(1+sqrt(2),sqrt(2)),E);MP("D",(0,sqrt(2)+sqrt(13-2*sqrt(2))),N);MP("E",(-1-sqrt(2),sqrt(2)),W); | MP("A",(-1,0),SW);MP("B",(1,0),SE);MP("C",(1+sqrt(2),sqrt(2)),E);MP("D",(0,sqrt(2)+sqrt(13-2*sqrt(2))),N);MP("E",(-1-sqrt(2),sqrt(2)),W); | ||
dot((-1,0));dot((1,0));dot((1+sqrt(2),sqrt(2)));dot((-1-sqrt(2),sqrt(2)));dot((0,sqrt(2)+sqrt(13-2*sqrt(2)))); | dot((-1,0));dot((1,0));dot((1+sqrt(2),sqrt(2)));dot((-1-sqrt(2),sqrt(2)));dot((0,sqrt(2)+sqrt(13-2*sqrt(2)))); | ||
</asy> | </asy> | ||
− | <math>\ | + | First, drop perpendiculars from points <math>A</math> and <math>B</math> to segment <math>EC</math>. |
+ | |||
+ | Since <math>\angle EAB = 120^{\circ}</math>, <math>\angle EAF = 30^{\circ}</math>. | ||
+ | |||
+ | This implies that <math>\triangle EAF</math> is a 30-60-90 Triangle, so <math>EF = 1</math> and <math>AF = \sqrt3</math>. | ||
+ | |||
+ | Similarly, <math>GB = \sqrt3</math> and <math>GC = 1</math>. | ||
+ | |||
+ | Since <math>FABG</math> is a rectangle, <math>FG = AB = 2</math>. | ||
+ | |||
+ | Now, notice that since <math>EC = EF + FG + GC = 1+2+1=4</math>, triangle <math>DEC</math> is equilateral. | ||
+ | |||
+ | Thus, <math>[ABCDE] = [EABC]+[DCE] = \frac{2+4}{2}(\sqrt3)+\frac{4^2\cdot\sqrt3}{4} = 3\sqrt3+4\sqrt3=\boxed{7\sqrt3 (B)</math> | ||
== See also == | == See also == |
Revision as of 18:01, 9 March 2020
Problem
The convex pentagon has and . What is the area of ABCDE?
Solution
First, drop perpendiculars from points and to segment .
Since , .
This implies that is a 30-60-90 Triangle, so and .
Similarly, and .
Since is a rectangle, .
Now, notice that since , triangle is equilateral.
Thus, $[ABCDE] = [EABC]+[DCE] = \frac{2+4}{2}(\sqrt3)+\frac{4^2\cdot\sqrt3}{4} = 3\sqrt3+4\sqrt3=\boxed{7\sqrt3 (B)$ (Error compiling LaTeX. Unknown error_msg)
See also
1993 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.