Difference between revisions of "2019 AMC 10A Problems/Problem 2"

m (Solution 2)
Line 12: Line 12:
 
20 and 15 are both greater than 10, therefore they are divisible by 100 because of powers of 5 and powers of 2, so the hundreds digit is <math>\boxed{\textbf{(A) }0}</math>. ~peppapig_
 
20 and 15 are both greater than 10, therefore they are divisible by 100 because of powers of 5 and powers of 2, so the hundreds digit is <math>\boxed{\textbf{(A) }0}</math>. ~peppapig_
  
 +
==Video Solution==
 +
https://youtu.be/V1fY0oLSHvo
 +
 +
~savannahsolver
 
==See Also==
 
==See Also==
  
 
{{AMC10 box|year=2019|ab=A|num-b=1|num-a=3}}
 
{{AMC10 box|year=2019|ab=A|num-b=1|num-a=3}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 16:32, 16 June 2020

Problem

What is the hundreds digit of $(20!-15!)?$

$\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }4\qquad\textbf{(E) }5$

Solution

The last three digits of $n!$ for all $n\geq15$ are $000$, because there are at least three $2$s and three $5$s in its prime factorization. Because $0-0=0$, the answer is $\boxed{\textbf{(A) }0}$.

Solution 2

20 and 15 are both greater than 10, therefore they are divisible by 100 because of powers of 5 and powers of 2, so the hundreds digit is $\boxed{\textbf{(A) }0}$. ~peppapig_

Video Solution

https://youtu.be/V1fY0oLSHvo

~savannahsolver

See Also

2019 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png