Difference between revisions of "2006 AMC 12A Problems/Problem 15"
(added category) |
m (→Problem: spacing) |
||
Line 3: | Line 3: | ||
Suppose <math>\cos x=0</math> and <math>\cos (x+z)=1/2</math>. What is the smallest possible positive value of <math>z</math>? | Suppose <math>\cos x=0</math> and <math>\cos (x+z)=1/2</math>. What is the smallest possible positive value of <math>z</math>? | ||
− | <math> \mathrm{(A) \ } \frac{\pi}{6}\qquad \mathrm{(B) \ } \frac{\pi}{3}\qquad \mathrm{(C) \ } \frac{\pi}{2}\qquad \mathrm{(D) \ } \frac{5\pi}{6} | + | <math> \mathrm{(A) \ } \frac{\pi}{6}\qquad \mathrm{(B) \ } \frac{\pi}{3}\qquad \mathrm{(C) \ } \frac{\pi}{2}\qquad \mathrm{(D) \ } \frac{5\pi}{6} \quad \mathrm{(E) \ } \frac{7\pi}{6}</math> |
− | |||
− | |||
== Solution == | == Solution == |
Revision as of 18:50, 31 January 2007
Problem
Suppose and . What is the smallest possible positive value of ?