2006 AMC 12A Problems/Problem 16

The following problem is from both the 2006 AMC 12A #16 and 2006 AMC 10A #23, so both problems redirect to this page.

Problem

Circles with centers $A$ and $B$ have radius 3 and 8, respectively. A common internal tangent intersects the circles at $C$ and $D$, respectively. Lines $AB$ and $CD$ intersect at $E$, and $AE=5$. What is $CD$?

[asy] unitsize(2.5mm); defaultpen(fontsize(10pt)+linewidth(.8pt)); dotfactor=3;  pair A=(0,0), Ep=(5,0), B=(5+40/3,0); pair M=midpoint(A--Ep); pair C=intersectionpoints(Circle(M,2.5),Circle(A,3))[1]; pair D=B+8*dir(180+degrees(C));  dot(A); dot(C); dot(B); dot(D); draw(C--D); draw(A--B); draw(Circle(A,3)); draw(Circle(B,8));  label("$A$",A,W); label("$B$",B,E); label("$C$",C,SE); label("$E$",Ep,SSE); label("$D$",D,NW); [/asy]

$\textbf{(A) } 13\qquad\textbf{(B) } \frac{44}{3}\qquad\textbf{(C) } \sqrt{221}\qquad\textbf{(D) } \sqrt{255}\qquad\textbf{(E) } \frac{55}{3}\qquad$

Solution

2006 AMC12A-16a.png

$\angle AED$ and $\angle BEC$ are vertical angles so they are congruent, as are angles $\angle ADE$ and $\angle BCE$ (both are right angles because the radius and tangent line at a point on a circle are always perpendicular). Thus, $\triangle ACE \sim \triangle BDE$. By the Pythagorean Theorem, line segment $DE = 4$. The sides are proportional, so $\frac{DE}{AD} = \frac{CE}{BC} \Rightarrow \frac{4}{3} = \frac{CE}{8}$. This makes $CE = \frac{32}{3}$ and $CD = CE + DE = 4 + \frac{32}{3} = \boxed{\textbf{(B) }\frac{44}{3}}$.

See also

2006 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2006 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png