Difference between revisions of "1988 AIME Problems/Problem 9"
(→Solution 3) |
L imperiacus (talk | contribs) m (→Solution 2) |
||
Line 14: | Line 14: | ||
By looking at the last digit again, we see <math>a \equiv 3 \pmod5</math>, so we let <math>a = 5a_1 + 3</math> where <math>a_1 \in \mathbb{Z^+}</math>. Plugging this in to <math>5a^2 + 12a \equiv 1 \pmod{25}</math> gives <math>10a_1 + 6 \equiv 1 \pmod{25}</math>. Obviously, <math>a_1 \equiv 2 \pmod 5</math>, so we let <math>a_1 = 5a_2 + 2</math> where <math>a_2</math> can be any non-negative integer. | By looking at the last digit again, we see <math>a \equiv 3 \pmod5</math>, so we let <math>a = 5a_1 + 3</math> where <math>a_1 \in \mathbb{Z^+}</math>. Plugging this in to <math>5a^2 + 12a \equiv 1 \pmod{25}</math> gives <math>10a_1 + 6 \equiv 1 \pmod{25}</math>. Obviously, <math>a_1 \equiv 2 \pmod 5</math>, so we let <math>a_1 = 5a_2 + 2</math> where <math>a_2</math> can be any non-negative integer. | ||
− | Therefore, <math>n = 2 + 5(3+ 5(2+5a_2)) = 125a_2 + 67</math>. <math>n</math> must also be a multiple of <math>8</math>, so <math>125a_2 + 67 \equiv | + | Therefore, <math>n = 2 + 5(3+ 5(2+5a_2)) = 125a_2 + 67</math>. <math>n^3</math> must also be a multiple of <math>8</math>, so <math>n</math> must be even. <math>125a_2 + 67 \equiv 0 \pmod 2 \implies a_2 \equiv 1 \pmod 2</math>. Therefore, <math>a_2 = 2a_3 + 1</math>, where <math>a_3</math> is any non-negative integer. The number <math>n</math> has form <math>125(2a_3+1)+67 = 250a_3+192</math>. So the minimum <math>n = \boxed{192}</math>. |
=== Solution 3 === | === Solution 3 === |
Revision as of 23:49, 31 July 2020
Problem
Find the smallest positive integer whose cube ends in .
Solution
Solution 1
A little bit of checking tells us that the units digit must be 2. Now our cube must be in the form of ; using the binomial theorem gives us . Since we are looking for the tens digit, we get . This is true if the tens digit is either or . Casework:
- : Then our cube must be in the form of . Hence the lowest possible value for the hundreds digit is , and so is a valid solution.
- : Then our cube is . The lowest possible value for the hundreds digit is , and we get . Hence, since , the answer is
Solution 2
and . due to the last digit of . Let . By expanding, .
By looking at the last digit again, we see , so we let where . Plugging this in to gives . Obviously, , so we let where can be any non-negative integer.
Therefore, . must also be a multiple of , so must be even. . Therefore, , where is any non-negative integer. The number has form . So the minimum .
Solution 3
Let . We factor an out of the right hand side, and we note that must be of the form , where is a positive integer. Then, this becomes . Taking mod , , and , we get , , and .
We can work our way up, and find that , , and finally . This gives us our smallest value, , so , as desired. - Spacesam
See also
1988 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.