Difference between revisions of "1997 AIME Problems/Problem 14"

 
(Problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
Let <math>\displaystyle v</math> and <math>\displaystyle w</math> be distinct, randomly chosen roots of the equation <math>\displaystyle z^{1997}-1=0</math>.  Let <math>\displaystyle \frac{m}{n}</math> be the probability that <math>\displaystyle\sqrt{2+\sqrt{3}}\le\left|v+w\right|</math>, where <math>\displaystyle m</math> and <math>\displaystyle n</math> are relatively prime positive integers.  Find <math>\displaystyle m+n</math>.
  
 
== Solution ==
 
== Solution ==

Revision as of 18:58, 7 March 2007

Problem

Let $\displaystyle v$ and $\displaystyle w$ be distinct, randomly chosen roots of the equation $\displaystyle z^{1997}-1=0$. Let $\displaystyle \frac{m}{n}$ be the probability that $\displaystyle\sqrt{2+\sqrt{3}}\le\left|v+w\right|$, where $\displaystyle m$ and $\displaystyle n$ are relatively prime positive integers. Find $\displaystyle m+n$.

Solution

See also