Difference between revisions of "1992 AIME Problems/Problem 5"

m
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
Let <math>S^{}_{}</math> be the set of all rational numbers <math>r^{}_{}</math>, <math>0^{}_{}<r<1</math>, that have a repeating decimal expansion in the form <math>0.abcabcabc\ldots=0.\overline{abc}</math>, where the digits <math>a^{}_{}</math>, <math>b^{}_{}</math>, and <math>c^{}_{}</math> are not necessarily distinct. To write the elements of <math>S^{}_{}</math> as fractions in lowest terms, how many different numerators are required?
  
 
== Solution ==
 
== Solution ==

Revision as of 21:29, 10 March 2007

Problem

Let $S^{}_{}$ be the set of all rational numbers $r^{}_{}$, $0^{}_{}<r<1$, that have a repeating decimal expansion in the form $0.abcabcabc\ldots=0.\overline{abc}$, where the digits $a^{}_{}$, $b^{}_{}$, and $c^{}_{}$ are not necessarily distinct. To write the elements of $S^{}_{}$ as fractions in lowest terms, how many different numerators are required?

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also