Difference between revisions of "2008 AMC 12B Problems/Problem 23"
(→Solution 1) |
(→Solution 1) |
||
Line 6: | Line 6: | ||
== Solutions == | == Solutions == | ||
=== Solution 1 === | === Solution 1 === | ||
− | Every factor of <math>10^n</math> will be of the form <math>2^a \times 5^b , a\leq n , b\leq n</math>. Not all of these base ten logarithms will be rational, but we can add them together in a certain way to make it rational. Recall the logarithmic property <math>\log(a \times b) = \log(a)+\log(b)</math>. For any factor <math>2^a \times 5^b</math>, there will be another factor <math>2^n-a \times 5^n-b< | + | Every factor of <math>10^n</math> will be of the form <math>2^a \times 5^b , a\leq n , b\leq n</math>. Not all of these base ten logarithms will be rational, but we can add them together in a certain way to make it rational. Recall the logarithmic property <math>\log(a \times b) = \log(a)+\log(b)</math>. For any factor <math>2^a \times 5^b</math>, there will be another factor <math>2^(n-a) \times </math>5^(n-b)<math>.(This is not true if </math>10^n<math> is a perfect square.) When these are added, they equal 2^(a+n-a)</math> \times 5^(b+n-b)<math> = </math>10^n. Log <math>10^n=n. This means the number of factors divided by 2 times n equals the sum of all the factors, 792. |
There are </math>n+1<math> choices for the exponent of 5 in each factor, and for each of those choices, there are </math>n+1<math> factors (each corresponding to a different exponent of 2), yielding </math>0+1+2+3...+n = \frac{n(n+1)}{2}<math> total factors. So we have \frac{n(n+1)}{2}</math> divided by 2 times n = 792 | There are </math>n+1<math> choices for the exponent of 5 in each factor, and for each of those choices, there are </math>n+1<math> factors (each corresponding to a different exponent of 2), yielding </math>0+1+2+3...+n = \frac{n(n+1)}{2}<math> total factors. So we have \frac{n(n+1)}{2}</math> divided by 2 times n = 792 |
Revision as of 11:19, 14 December 2020
Contents
Problem 23
The sum of the base- logarithms of the divisors of is . What is ?
Solutions
Solution 1
Every factor of will be of the form . Not all of these base ten logarithms will be rational, but we can add them together in a certain way to make it rational. Recall the logarithmic property . For any factor , there will be another factor 5^(n-b)10^n \times 5^(b+n-b)10^n. Log $10^n=n. This means the number of factors divided by 2 times n equals the sum of all the factors, 792.
There are$ (Error compiling LaTeX. Unknown error_msg)n+1n+10+1+2+3...+n = \frac{n(n+1)}{2} divided by 2 times n = 792
Solution 2
We are given The property now gives The product of the divisors is (from elementary number theory) where is the number of divisors. Note that , so . Substituting these values with in our equation above, we get , from whence we immediately obtain as the correct answer.
Solution 3
For every divisor of , , we have . There are divisors of that are . After casework on the parity of , we find that the answer is given by .
Solution 4
The sum is Trying for answer choices we get
Alternative thinking
After arriving at the equation , notice that all of the answer choices are in the form , where is . We notice that the ones digit of is , and it is dependent on the ones digit of the answer choices. Trying for , we see that only yields a ones digit of , so our answer is .
See Also
2008 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.