Difference between revisions of "2001 IMO Problems"
(→Problem 6) |
(→Problem 6) |
||
Line 21: | Line 21: | ||
==Problem 6== | ==Problem 6== | ||
− | <math>k > l > m > n</math> are positive integers such that <math>km + ln = (k+l-m | + | <math>k > l > m > n</math> are positive integers such that <math>km + ln = (k+l-m+n)(-k+l+m+n)</math>. Prove that <math>kl+mn</math> is not prime. |
==See Also== | ==See Also== |
Latest revision as of 20:52, 15 April 2021
Problem 1
Consider an acute triangle . Let be the foot of the altitude of triangle issuing from the vertex , and let be the circumcenter of triangle . Assume that . Prove that .
Problem 2
Let be positive real numbers. Prove that .
Problem 3
Twenty-one girls and twenty-one boys took part in a mathematical competition. It turned out that each contestant solved at most six problems, and for each pair of a girl and a boy, there was at least one problem that was solved by both the girl and the boy. Show that there is a problem that was solved by at least three girls and at least three boys.
Problem 4
Let be integers where is odd. Let denote a permutation of the integers . Let . Show that for some distinct permutations , the difference is a multiple of .
Problem 5
is a triangle. lies on and bisects angle . lies on and bisects angle . Angle is . . Find all possible values for angle .
Problem 6
are positive integers such that . Prove that is not prime.