Difference between revisions of "2021 AMC 10A Problems/Problem 13"

(Added in Sol 2.)
(Solution 2 (Bash: Coordinate Geometry))
Line 8: Line 8:
  
 
==Solution 2 (Bash: Coordinate Geometry)==
 
==Solution 2 (Bash: Coordinate Geometry)==
We will place tetrahedron <math>ABCD</math> in the <math>xyz</math>-plane. By the Converse of the Pythagorean Theorem, we know that <math>\triangle ACD</math> is a right triangle. Without the loss of generality, let <math>A=(0,0,0), C=(3,0,0), D=(0,4,0),</math> and <math>B=(x,y,z).</math>
+
We will place tetrahedron <math>ABCD</math> in the <math>xyz</math>-plane. By the Converse of the Pythagorean Theorem, we know that <math>\triangle ACD</math> is a right triangle. Without the loss of generality, let <math>A=(0,0,0), C=(3,0,0), D=(0,4,0),</math> and <math>B=(x,y,z).</math> Applying the Distance Formula to <math>\overline{BA},\overline{BC},</math> and <math>\overline{BD},</math> respectively, we have the following system:
 +
<cmath>\begin{align*}
 +
x^2+y^2+z^2&=2^2, \\
 +
(x-3)^2+y^2+z^2&=\sqrt{13}^2, \\
 +
x^2+(y-4)^2+z^2&=\left(2\sqrt5\right)^2.
 +
\end{align*}</cmath>
  
 
~MRENTHUSIASM
 
~MRENTHUSIASM

Revision as of 11:39, 24 April 2021

Problem

What is the volume of tetrahedron $ABCD$ with edge lengths $AB = 2$, $AC = 3$, $AD = 4$, $BC = \sqrt{13}$, $BD = 2\sqrt{5}$, and $CD = 5$ ?

$\textbf{(A)} ~3 \qquad\textbf{(B)} ~2\sqrt{3} \qquad\textbf{(C)} ~4\qquad\textbf{(D)} ~3\sqrt{3}\qquad\textbf{(E)} ~6$

Solution 1 (Observations)

Drawing the tetrahedron out and testing side lengths, we realize that the $\triangle ABD, \triangle ABC,$ and $\triangle ABD$ are right triangles by the Converse of the Pythagorean Theorem. It is now easy to calculate the volume of the tetrahedron using the formula for the volume of a pyramid. If we take $\triangle ADC$ as the base, then $AB$ must be the height. $\dfrac{1}{3} \cdot \dfrac{3 \cdot 4}{2} \cdot 2$, so we have an answer of $\boxed{\textbf{(C) } 4}$.

Solution 2 (Bash: Coordinate Geometry)

We will place tetrahedron $ABCD$ in the $xyz$-plane. By the Converse of the Pythagorean Theorem, we know that $\triangle ACD$ is a right triangle. Without the loss of generality, let $A=(0,0,0), C=(3,0,0), D=(0,4,0),$ and $B=(x,y,z).$ Applying the Distance Formula to $\overline{BA},\overline{BC},$ and $\overline{BD},$ respectively, we have the following system: \begin{align*} x^2+y^2+z^2&=2^2, \\ (x-3)^2+y^2+z^2&=\sqrt{13}^2, \\ x^2+(y-4)^2+z^2&=\left(2\sqrt5\right)^2. \end{align*}

~MRENTHUSIASM

Similar Problem

https://artofproblemsolving.com/wiki/index.php/2015_AMC_10A_Problems/Problem_21

Video Solution (Simple & Quick)

https://youtu.be/bRrchiDCrKE

~ Education, the Study of Everything

Video Solution (Using Pythagorean Theorem, 3D Geometry - Tetrahedron)

https://youtu.be/i4yUaXVUWKE

~ pi_is_3.14

Video Solution by TheBeautyofMath

https://youtu.be/t-EEP2V4nAE?t=813

~IceMatrix

See also

2021 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png