Difference between revisions of "1972 AHSME Problems/Problem 11"
(just grabbed solution off aops website - not my work, but work of some aops person) |
|||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
+ | The value(s) of <math>y</math> for which the following pair of equations <math>x^2+y^2+16=0\text{ and }x^2-3y+12=0</math> may have a real common solution, are | ||
+ | |||
+ | <math>\textbf{(A) }4\text{ only}\qquad \textbf{(B) }-7,~4\qquad \textbf{(C) }0,~4\qquad \textbf{(D) }\text{no }y\qquad \textbf{(E) }\text{all }y</math> | ||
+ | |||
+ | ==Solution== | ||
We can rewrite the equation <math>47_a = 74_b</math> as <math>4a+7 = 7b+4</math>, or <cmath> 7(a+b) = 11a + 3. </cmath> | We can rewrite the equation <math>47_a = 74_b</math> as <math>4a+7 = 7b+4</math>, or <cmath> 7(a+b) = 11a + 3. </cmath> | ||
Then <math>7(a + b) \equiv 3 \pmod{11}</math>. Testing all the residues modulo 11, we find that the only solution to <math>7x \equiv 3 \pmod{11}</math> is <math>x \equiv 2 \pmod{11}</math>, so <math>a + b \equiv 2 \pmod{11}</math>. | Then <math>7(a + b) \equiv 3 \pmod{11}</math>. Testing all the residues modulo 11, we find that the only solution to <math>7x \equiv 3 \pmod{11}</math> is <math>x \equiv 2 \pmod{11}</math>, so <math>a + b \equiv 2 \pmod{11}</math>. | ||
Now, since 7 is a digit in base <math>a</math> and base <math>b</math>, we must have <math>a, b \ge 8</math>. We must also have <math>a+b \equiv 2 \pmod{11}</math>, so <math>a+b \ge 24</math>. We can have equality with <math>a=15, b=9</math>, so the least possible value of <math>a+b</math> is <math>\boxed{24}</math>. | Now, since 7 is a digit in base <math>a</math> and base <math>b</math>, we must have <math>a, b \ge 8</math>. We must also have <math>a+b \equiv 2 \pmod{11}</math>, so <math>a+b \ge 24</math>. We can have equality with <math>a=15, b=9</math>, so the least possible value of <math>a+b</math> is <math>\boxed{24}</math>. |
Revision as of 20:54, 22 June 2021
Problem
The value(s) of for which the following pair of equations may have a real common solution, are
Solution
We can rewrite the equation as , or Then . Testing all the residues modulo 11, we find that the only solution to is , so .
Now, since 7 is a digit in base and base , we must have . We must also have , so . We can have equality with , so the least possible value of is .