Difference between revisions of "1987 AIME Problems/Problem 14"

(Solution 3 (Complex Numbers))
Line 27: Line 27:
 
In both the numerator and the denominator, each factor is of the form <math>N^4+324=N^4+18^2</math> for some positive integer <math>N.</math>
 
In both the numerator and the denominator, each factor is of the form <math>N^4+324=N^4+18^2</math> for some positive integer <math>N.</math>
  
We factor <math>N^4+18^2</math> by solving the equation <math>N^4+18^2=0.</math>
+
We factor <math>N^4+18^2</math> by solving the equation <math>N^4+18^2</math> <math>=0</math>.
 
 
<b>IN PROGRESS. NO EDIT PLEASE</b>
 
  
 
== Video Solution ==
 
== Video Solution ==

Revision as of 16:41, 1 July 2021

Problem

Compute \[\frac{(10^4+324)(22^4+324)(34^4+324)(46^4+324)(58^4+324)}{(4^4+324)(16^4+324)(28^4+324)(40^4+324)(52^4+324)}.\]

Solution 1 (Sophie Germain Identity)

The Sophie Germain Identity states that $a^4 + 4b^4$ can be factored as $(a^2 + 2b^2 - 2ab)(a^2 + 2b^2 + 2ab)$. Each of the terms is in the form of $x^4 + 324$. Using Sophie Germain, we get that \[x^4 + 4\cdot 3^4 = (x^2 + 2 \cdot 3^2 - 2\cdot 3\cdot x)(x^2 + 2 \cdot 3^2 + 2\cdot 3\cdot x) = (x(x-6) + 18)(x(x+6)+18),\] so the original expression becomes

$\frac{[(10(10-6)+18)(10(10+6)+18)][(22(22-6)+18)(22(22+6)+18)]\cdots[(58(58-6)+18)(58(58+6)+18)]}{[(4(4-6)+18)(4(4+6)+18)][(16(16-6)+18)(16(16+6)+18)]\cdots[(52(52-6)+18)(52(52+6)+18)]}$

$= \frac{(10(4)+18)(10(16)+18)(22(16)+18)(22(28)+18)\cdots(58(52)+18)(58(64)+18)}{(4(-2)+18)(4(10)+18)(16(10)+18)(16(22)+18)\cdots(52(46)+18)(52(58)+18)}$

Almost all of the terms cancel out! We are left with $\frac{58(64)+18}{4(-2)+18} = \frac{3730}{10} = \boxed{373}$.

Solution 2 (Completing the Square and Difference of Squares)

In both the numerator and the denominator, each factor is of the form $N^4+324=N^4+18^2$ for some positive integer $N.$

We factor $N^4+18^2$ by completing the square, then applying the difference of squares: \begin{align*} N^4+18^2&=\left(N^4+36N^2+18^2\right)-36N^2 \\ &=\left(N^2+18\right)^2-(6N)^2 \\ &=\left(N^2-6N+18\right)\left(N^2+6N+18\right) \\ &=\left((N-3)^2+9\right)\left((N+3)^2+9\right). \end{align*} The original expression now becomes \[\frac{\left[(7^2+9)(13^2+9)\right]\left[(19^2+9)(25^2+9)\right]\left[(31^2+9)(37^2+9)\right]\left[(43^2+9)(49^2+9)\right]\left[(55^2+9)(61^2+9)\right]}{\left[(1^2+9)(7^2+9)\right]\left[(13^2+9)(19^2+9)\right]\left[(25^2+9)(31^2+9)\right]\left[(37^2+9)(43^2+9)\right]\left[(49^2+9)(55^2+9)\right]}=\frac{61^2+9}{1^2+9}=\boxed{373}.\] ~MRENTHUSIASM

Solution 3 (Complex Numbers)

In both the numerator and the denominator, each factor is of the form $N^4+324=N^4+18^2$ for some positive integer $N.$

We factor $N^4+18^2$ by solving the equation $N^4+18^2$ $=0$.

Video Solution

https://youtu.be/ZWqHxc0i7ro?t=1023

~ pi_is_3.14

See also

1987 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png