Difference between revisions of "1982 AHSME Problems/Problem 30"
MRENTHUSIASM (talk | contribs) |
MRENTHUSIASM (talk | contribs) |
||
Line 12: | Line 12: | ||
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
A^{19}+B^{19} &= \left[\binom{19}{0}15^{19}\sqrt{220}^0+\binom{19}{1}15^{18}\sqrt{220}^1+\cdots+\binom{19}{19}15^0\sqrt{220}^{19}\right] + \left[\binom{19}{0}15^{19}\sqrt{220}^0-\binom{19}{1}15^{18}\sqrt{220}^1+\cdots-\binom{19}{19}15^0\sqrt{220}^{19}\right] \\ | A^{19}+B^{19} &= \left[\binom{19}{0}15^{19}\sqrt{220}^0+\binom{19}{1}15^{18}\sqrt{220}^1+\cdots+\binom{19}{19}15^0\sqrt{220}^{19}\right] + \left[\binom{19}{0}15^{19}\sqrt{220}^0-\binom{19}{1}15^{18}\sqrt{220}^1+\cdots-\binom{19}{19}15^0\sqrt{220}^{19}\right] \\ | ||
− | &= 2\left[\binom{19}{0}15^{19}\sqrt{220}^0+\binom{19}{2}15^{17}\sqrt{220}^2+\cdots+\binom{19}{18}15^1\sqrt{220}^{18}\right]. | + | &= 2\left[\binom{19}{0}15^{19}\sqrt{220}^0+\binom{19}{2}15^{17}\sqrt{220}^2+\cdots+\binom{19}{18}15^1\sqrt{220}^{18}\right] \\ |
+ | &= 2\left[\binom{19}{0}15^{19}+\binom{19}{2}15^{17}220+\cdots+\binom{19}{18}15^1 220^9\right]. | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
+ | Similarly, we have <cmath>A^{82}+B^{82}=2\left[\binom{82}{0}15^{82}+\binom{82}{2}15^{80}220+\cdots+\binom{82}{82}220^{41}\right].</cmath> | ||
== See Also == | == See Also == | ||
{{AHSME box|year=1982|num-b=29|after=Last Problem}} | {{AHSME box|year=1982|num-b=29|after=Last Problem}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 23:08, 11 September 2021
Problem
Find the units digit of the decimal expansion of
Solution
Let and Note that and are both integers: When we expand (Binomial Theorem) and combine like terms for each expression, the rational terms are added and the irrational terms are canceled. We have Similarly, we have
See Also
1982 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 29 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.